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Context: Just-in-time defect prediction (JIT-DP) is a crucial process in software development that focuses
on identifying potential defects during code changes, facilitating early mitigation and quality assurance. Pre-
trained language models like CodeBERT have shown promise in various applications but often struggle to
distinguish between defective and non-defective code, especially when dealing with noisy labels.

Objective: The primary aim of this study is to enhance the robustness of pre-trained language models in
identifying software defects by developing an innovative framework that leverages contrastive learning and
feature fusion.

Method: We introduce JIT-CF, a framework that improves model robustness by employing contrastive learning
to maximize similarity within positive pairs and minimize it between negative pairs, thereby enhancing the
model’s ability to detect subtle differences in code changes. Additionally, feature fusion is used to combine
semantic and expert features, enabling the model to capture richer contextual information. This integrated
approach aims to improve the identification and resolution of code defects.

Results: JIT-CF was evaluated using the JIT-Defects4J dataset, which includes 23,379 code commits from 21
projects. The results indicate substantial performance improvements over seven state-of-the-art baselines, with
enhancements of up to 13.9% in F1-score, 8% in AUC, and 11% in Recall@20%E. The study also explores the
impact of specific customization enhancements, demonstrating the potential for improved just-in-time defect
localization.

Conclusion: The proposed JIT-CF framework significantly advances the field of just-in-time defect prediction
by effectively addressing the challenges encountered by pre-trained models in distinguishing code defects. The
integration of contrastive learning and feature fusion not only enhances the model’s robustness but also leads
to notable improvements in prediction accuracy, offering valuable insights for future applications in software
development.

1. Introduction indicates the defect scope at the file or module level [3-7], while fine-

grained approaches seek to pinpoint defects at a more detailed level,

Defects are an inevitable aspect of software development, often
resulting from modifications made during the software’s creation and
evolution [1,2]. These defects can significantly impact the software’s
reliability and functionality. Consequently, Software Defect Prediction
(SDP) has emerged as an active research topic, focusing on identifying
potential defects early in the software development life cycle to enable
developers to proactively localize and fix them. To achieve this goal,
researchers have developed a variety of defect prediction approaches
at different levels of granularity. Coarse-grained approaches typically
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such as line number of code [8-19].

Modern software development is inherently iterative, characterized
by frequent code changes and updates. This dynamic evolution requires
the timely detection of potential defects as they arise. Just-In-Time
defect prediction (JIT-DP) focuses on predicting defects at the time
code changes are committed, thereby facilitating immediate correc-
tive actions [20-22]. Recently, JIT-DP has emerged as a significant
advancement within the Software Defect Prediction domain. State-of-
the-art JIT-DP techniques leverage machine learning models to predict
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whether specific commits will introduce defects, often through the
analysis of semantic features or expert features.

Semantic features are derived from the underlying structure and
relationships within the code, offering insights into potential defect-
prone patterns [23]. These features capture the logical and syntactic
elements of code, reflecting how changes may influence software be-
havior. Conversely, expert features are based on domain expertise and
capture characteristics like code change history, developer experience,
and modification size. The pioneering work by Kamei et al. [20] defined
14 features across five dimensions: diffusion, size, purpose, code change
history, and developer experience. These 14 features have become
expert features in the field of JIT-DP research.

Various state-of-the-art research has been proposed to facilitate
JIT-DP tasks, making significant progress and achieving promising re-
sults [24-27]. For example, deep learning models such as DeepJIT [23]
and CC2Vec [25] have shown significant improvements in capturing
semantic information from code changes. Additionally, recent work
by Ni et al. [28] proposed integrating semantic features with expert
features of code changes using a unified learning model, demonstrating
enhanced prediction performance.

Despite significant progress in recent years, existing JIT-DP tech-
niques still face several limitations: First, distinguishing between sim-
ilar code changes remains a significant challenge. Identifying defect-
inducing commits is particularly difficult when the code changes that
introduce defects closely resemble those that do not. Traditional ma-
chine learning models, such as decision trees and support vector ma-
chines, often struggle to capture these subtle differences effectively.
Even neural network-based models find it challenging to discern fine-
grained distinctions between defect-inducing and non-defect-inducing
code changes, resulting in diminished prediction performance. Second,
existing techniques often fail to capture sufficient code information [29,
30]. Defect-prone commits are often influenced by the broader context
in which code changes occur, including historical commit patterns and
interactions between different code segments. However, most existing
techniques focus primarily on isolated code modifications, neglecting
the surrounding context. This incomplete comprehension of the code’s
environment reduces prediction accuracy, particularly within complex
software systems. Third, existing JIT-DP techniques are often sensitive
to noisy labels. Noisy labels are a prevalent issue in software defect
datasets, where mislabeled or incomplete annotations can mislead the
model during training. Most existing JIT-DP techniques rely on super-
vised learning approaches that assume all labels are reliable, making
them vulnerable to errors introduced by noisy data. This sensitivity can
cause the model to mislabel defect-prone code, thereby reducing the
model’s overall effectiveness.

To address the limitations of existing JIT-DP techniques, we intro-
duce contrastive learning into the semantic feature extraction stage.
Contrastive learning operates by maximizing the similarity between se-
mantically related code changes and minimizing the similarity between
unrelated changes [31-34]. This approach allows the model to learn
more nuanced representations, making it more robust to subtle code
changes and reducing the impact of noisy labels. As a result, the model’s
predictive performance improves, leading to better identification of
defect-inducing commits.

Additionally, we refine the model architecture during the feature
fusion stage to enhance context capture. By integrating semantic fea-
tures derived from the code with expert-crafted features based on
domain knowledge, we optimize the fusion process through various
configurations of fully connected layers and activation functions. This
architectural tuning enables the model to learn higher-level abstrac-
tions, capturing both localized code changes and their broader context.
Consequently, the model can accurately identify defect-prone areas
while understanding the complex relationships between code compo-
nents, significantly improving the performance and reliability of JIT
defect prediction.
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In this paper, we propose a novel approach called JIT-CF, which
enhances the ability of pre-trained model [35,36] to extract semantic
features through contrastive learning. To the best of our knowledge,
JIT-CF is the first to introduce contrastive learning into the JIT-DP
task. Specifically, during the semantic feature extraction phase, we
employ contrastive learning to enhance CodeBERT’s capability to dif-
ferentiate between similar code changes. Furthermore, to improve the
model’s ability to capture context, we implement feature fusion, during
which we fine-tune the model and identify an optimal configuration.
These strategies significantly improve the performance and reliability
of JIT-DP, providing a robust and scalable solution for predicting
defect-inducing code modifications.

We also evaluate JIT-CF using the JIT-Defects4J dataset, which
comprises 21 open-source projects with 27,391 code changes, provid-
ing a comprehensive benchmark for defect prediction. To assess the
performance of JIT-CF, we compare it against seven state-of-the-art
baselines [23-26,28,37,38] across a range of experimental settings. Our
evaluation employs five performance metrics, categorized into effort-
agnostic and effort-aware measures, to ensure a comprehensive analysis
of prediction performance. Notably, JIT-CF achieves a 13.9% improve-
ment in Fl-score over the best baseline, JIT-Fine [28], highlighting its
superior capability in identifying defect-inducing code changes. These
improvements in prediction performance demonstrate the effectiveness
of JIT-CF, confirming its advancement over current state-of-the-art
methods.

The key contributions of this paper are as follows:

» We introduce JIT-CF, an innovative framework that incorpo-
rates contrastive learning and feature fusion into the JIT-DP task.
This approach enhances the model’s ability to discern subtle
differences in code changes, thereby improving its capacity to
differentiate between similar code modifications and effectively
mitigate the impact of noisy labels.

We fine-tune the model during the feature fusion phase, identify
an optimal architectural configuration that maximizes perfor-
mance. This optimal design choice enhances the integration of
semantic and expert features, resulting in the best predictive
performance in JIT-DP task.

We conduct an extensive evaluation of the impact of contrastive
learning and network architecture optimization on model perfor-
mance, utilizing metrics such as Fl-score and AUC. Our experi-
mental results demonstrate that integrating contrastive learning
with feature fusion significantly outperforms seven state-of-the-
art approaches.

We provide access to JIT-CF' to facilitate and encourage future
research in Just-In-Time Defect Prediction.

The rest of this paper is organized as follows. Section 2 outlines
the background and motivation for our research. Section 3 details the
design of JIT-CF. Section 4 examines the experimental settings, in-
cluding the comparative baselines and performance metrics considered.
Section 5 presents the experimental results. Subsequently, Section 6
discusses various issues and potential threats to validity. Section 7
reviews related work and highlights the novelty of our study. Finally,
we conclude our work and suggest directions for future research in
Section 8.

2. Background and motivation
2.1. Just-In-Time defect prediction

Just-In-Time defect prediction (JIT-DP) has attracted growing in-
terest in recent years due to its potential to identify defects at the
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moment of code commitment, thereby facilitating early detection and
resolution. The key goal of JIT-DP is to predict which code changes are
likely to introduce defects, enabling developers to take immediate ac-
tion before the code is merged into the software system. This proactive
approach contrasts with traditional defect prediction techniques, which
often focus on detecting defects after they have been introduced.

The foundational work in this field by Mockus and Weiss [39]
introduced a classifier that utilizes commit history information—such
as the number of modified subsystems, changed files, and lines of
code added—to identify high-risk commits. Building on this foundation,
Kamei et al. [20] proposed 14 change-level features, which have since
become recognized as expert features in JIT-DP research for capturing
the characteristics of code changes. These features are especially valu-
able in effort-aware scenarios, where prioritizing changes based on the
effort required to resolve them is crucial.

Subsequent studies have aimed to enhance JIT-DP models by re-
fining feature representation and prediction techniques. For instance,
Yang et al. [24,40] introduced deep learning-based models to capture
more complex relationships in code changes. They developed a method
using Deep Belief Networks (DBNs) to extract high-level features [24],
and later combined decision trees with ensemble learning to create a
more robust predictor [40].

As research in this domain advanced, the focus shifted towards
enhancing model performance and addressing practical challenges. For
example, Young et al. [19] proposed a deep ensemble approach that
optimizes weights across classifiers to boost performance. Meanwhile,
Liu et al. [41] introduced an unsupervised model for JIT-DP called Code
Changes. Chen et al. [42] framed JIT-DP as a multi-objective optimiza-
tion problem to identify features that improve predictive performance.
Meclntosh et al. [15] conducted a longitudinal study involving over
37,000 changes, revealing that longer time intervals between training
and testing negatively impact model performance, recommending that
at least six months of historical data for training.

Other research has addressed challenges in the JIT-DP application.
Wan et al. [43] reviewed current defect prediction tools and surveyed
practitioners to identify limitations and future research needs. Cabral
et al. [8] tackled issues of validation latency and class imbalance in
online JIT-DP using a new sampling technique. More recently, deep
learning techniques have been applied to JIT-DP, such as the work
by Hoang et al. [23,25], who developed methods that learn repre-
sentations from both commit messages and code changes, effectively
capturing the semantics and context of code modifications.

A typical JIT-DP workflow generally involves feature extraction
from code changes, utilizing both semantic features (e.g., code structure
and syntactic dependencies) and expert-defined features (e.g., change
history, developer experience) are used to train a model. This trained
model then predicts the likelihood of a new code change being defect-
inducing. Through this process, JIT-DP aims to provide actionable in-
sights to developers, thereby enhancing software quality and reducing
the cost associated with fixing defects post-deployment.

2.2. Contrastive learning

Contrastive learning is a representation learning technique designed
to bring similar samples closer together in the feature space while
pushing dissimilar samples farther apart. By minimizing the distance
between similar pairs and maximizing the distance between dissimilar
pairs, contrastive learning effectively enhances the model’s ability to
learn discriminative features. This approach has demonstrated con-
siderable success across various domains in recent years, particularly
in computer vision and natural language processing. In the field of
computer vision, contrastive learning methods have been instrumen-
tal in improving image classification, object detection, and represen-
tation learning tasks [34,42,44-46]. In natural language processing
(NLP), contrastive learning has effectively improved sentence embed-
dings, text classification, and language understanding by leveraging the
similarities and differences between sentence pairs [47-49].
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Recent research has increasingly focused on the application of
contrastive learning across various software engineering tasks, owing
to its effectiveness in learning robust representations. For example, Bui
et al. [50] introduced Corder, a contrastive learning framework tailored
for software tasks such as code-to-code retrieval, text-to-code retrieval,
and code-to-text summarization. By learning the semantic relationships
between different code and text samples, Corder achieved notable
improvements across these tasks. Similarly, VarCLR [51] employs con-
trastive learning to capture the semantic representations of variable
names, enhancing performance in downstream tasks like variable sim-
ilarity scoring and correcting variable misspellings. ContraCode [52]
further demonstrates the versatility of contrastive learning by gener-
ating syntactic variants of JavaScript code through source-to-source
compilation. These generated code samples are then used to train a
contrastive model, successfully improving tasks such as clone detection,
type inference, and code summarization.

Contrastive learning’s ability to distinguish fine-grained differences
between similar entities while effectively leveraging their context has
made it an increasingly popular approach in software engineering
research. By learning to better represent code semantics and iden-
tify relationships between code changes, contrastive learning holds
significant potential for enhancing various tasks, including JIT-DP.

2.3. Motivation

JIT-DP plays a critical role in ensuring software quality and re-
liability. Recent advances in deep learning, particularly in natural
language processing (NLP) tasks, have demonstrated the capability of
pre-trained models to capture the semantic features of source code [28].
However, despite these advancements, current state-of-the-art JIT-DP
techniques still encounter considerable challenges which include diffi-
culty distinguishing between similar code changes, insufficient capture
of contextual information, and sensitivity to noisy labels.

The first challenge is to identify differences between similar code
changes. This capability is essential for the precise identification of
defect-inducing commits. Seemingly minor modifications, such as vari-
able renaming or formatting changes, may not alter the code’s logic,
yet they can cause existing models to misclassify these changes. Fig.
1 illustrate this issue: the original code snippet (Fig. 1(a)), correctly
identified as non-defective, becomes incorrectly classified as defective
after a superficial change, like variable renaming (Fig. 1(b)). This
sensitivity to minor modifications underscores the limitations of current
feature extraction techniques, including pre-trained models such as
CodeBERT. These models often concentrate on shallow-level features
and encounter difficulties in capturing deeper semantic similarities
when confronted with minor syntactic changes.

The second challenge is the insufficient capture of contextual infor-
mation. Current JIT-DP models often overlook broader context, such
as historical commit patterns and interactions between code segments,
which can play a critical role in defect introduction. We address this by
refining the network architecture during the feature fusion phase, and
optimizing the use of fully connected layers and activation functions.
This architectural enhancement enables the model to better capture
contextual relationships, thereby improving precision in predicting
defect-inducing changes.

The third challenge is the sensitivity to noisy labels. Incorrect or
incomplete annotations in training datasets often leads to decreased
model performance. By refining feature representations and optimizing
the learning process, the deep learning approach can become more
resilient to noise, thereby enhancing its generalizability across diverse
datasets.

To address these challenges, we propose JIT-CF, a novel framework
designed to enhance both the representation of code changes and the
model’s prediction performance in JIT defect prediction.
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01. | def add item to cart(cart, item, quantity):

02. if item in cart:

03. cart[item] += quantity
04. else:

05. cart[item] = quantity
6. return cart

08. | shopping_cart = {}
09. | shopping cart = add_item_to_cart(shopping_cart, 'apple’, 3)
10. | print(shopping_cart)

(a) Original code snippet correctly identified as
non-defective.

Information and Software Technology 182 (2025) 107706

L. | def update inventory(inventory, product, count):
02. if product in inventory:

3. inventory[product] += count

0a. else:

05. inventory[product] = count

6. return inventory

@8. | current_inventory = {}

@9. | current inventory = update_inventory(current_inventory, 'apple’, 3)
10. | print(current_inventory)

(b) Code snippet after variable renaming incor-
rectly identified as defective.

Fig. 1. An example of defect prediction error caused by overly similar code.

’
A. Data Pre-processing !

B. Feature Extracting and Enhancing

p—
-
- modified files

Project

E1 E2 E3 E13 E14
Expert
Hfﬁ ———  Feature [ JO o IO ¥ B v B s

source code

Extractor
expert features

code

M
Issue Tracking

System [_
defect reports

anchor

\
|
|
I
|
|
|

Repository !
|
|
[
|
|
|
I
|
|
I
1

code

Semantic
Feature
Extractor

LY
|-

negative

I
I
I
I
I
I
I
I
Y I
=) w1 | positive™
commit messages : P
I
I
I
I
I
I
I

« -» -ve Conloss
<—— +ve Conloss

= R —{ s
Attract
CL Loss

———[IT¥—— R —{ s Total Loss
CE Loss B

Contrastive Learning

CL Loss

ro=. Defects Prediction
= Report
<>

Defects |
Update Issue I
Tracking System |
I

I

| B = |

Optimize Network
Architecture

Feature Fusion

Semantic
Features

[

[

|

[

[

[

I

[

D ‘
|

Expert |
Features )
[

J

Fig. 2. The framework of our approach JIT-CF.

3. Approach

Our approach, JIT-CF as shown in Fig. 2, incorporates contrastive
learning during the semantic feature extraction phase for just-in-time
defect prediction. Additionally, JIT-CF optimizes the network archi-
tecture with the features fusion to enhance the model’s capability
in feature representation and improve its robustness. JIT-CF consists
of four main steps: @ Data Pre-processing: Collect data from code
repository and issue tracking system, including code commit history,
source code, bug report, etc. @ Feature Extracting and Enhancing:
Expert features are extracted by adopting the 14 code change-level
features defined by Kamei et al. [20]. Concurrently, semantic features
are extracted with the pre-trained model CodeBERT. Furthermore,
Contrastive learning is applied during the semantic feature extraction
phase to enhance feature representation; ® Integrated Learning and
Defect Predicting: The optimal fully connected layer is identified by
experimenting with various combinations of fully connected layers
and activation functions for feature fusion, leading to the final model
training; @ Prediction Result Reporting: Create prediction reports
of JIT-DP and document the identified defects within issue tracking
system. Details of JIT-CF are presented in the following subsections.

3.1. Data pre-processing

In the first stage of our approach, we focus on systematically col-
lecting and organizing data from both the code repository and the
issue tracking system. This involves gathering comprehensive infor-
mation, including the code commit history, which encompasses com-
mit messages, added lines, and deleted lines. Additionally, we extract
the source code and relevant bug reports. This stage is crucial as
it lays the foundation for subsequent analysis by ensuring that all
pertinent data is accurately captured and structured. The collected data
serves as the basis for further processing and analysis, facilitating a
deeper understanding of the code changes and their impact on software
quality.

3.2. Feature extracting and enhancing

This stage include two main sub-tasks: @ expert features extracting
and @ semantic features extracting and enhancing. Together, these sub-
tasks create a comprehensive feature set that combines both structured,
expert-driven insights and rich, context-aware semantic representa-
tions. This dual approach enhances the overall predictive accuracy and
robustness of the model by leveraging the strengths of both expert
knowledge and advanced machine learning techniques.

3.2.1. Expert features extracting

Expert feature extraction, involves identifying and extracting prede-
fined code change-level features that have been established by domain
experts, providing a structured and quantifiable basis for analysis.
These features offer insights into specific aspects of code changes
that are considered significant based on prior research and expert
knowledge.

In our approach, we utilized the 14 expert features proposed by
Kamei et al. [20], which capture various aspects of code changes,
including diffusion, size, purpose, history, and developer experience.
As detailed in Table 1, these features are selected based on their
well-established relevance and effectiveness in the field of JIT defect
prediction. For instance, diffusion features (e.g., NS, ND, NF) reflect
the scope and complexity of changes, while size features (e.g., LA,
LD) quantify the impact of changes on the codebase. Additionally,
history features (e.g., AGE, NUC) capture the frequency and stabil-
ity of changes, and developer experience features (e.g., EXP, SEXP)
reflect the familiarity and potential risk associated with developers’
modifications.

3.2.2. Semantic features extracting and enhancing
The extraction and enhancement of semantic features are crucial
for JIT-DP due to their ability to capture the nuanced and contextual
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Fig. 3. Feature Extraction via CodeBERT. The figure illustrates the process by which code tokens and related metadata are processed through multiple layers within the CodeBERT

to generate feature embeddings utilized for JIT-DP.

Table 1

The 14 expert features used in our study.
Name Description Dimension
NS Number of modified subsystems Diffusion
ND Number of modified directories Diffusion
NF Number of modified files Diffusion
Entropy Distribution of modified code across files Diffusion
LA Lines of code added Size
LD Lines of code deleted Size
LT Lines of code in file before change Size
FIX Indicates if the change is a defect fix Purpose
NDEV Number of developers who modified the files History
AGE Average time between last and current change History
NUC Number of unique changes to the files History
EXP Developer’s overall experience Experience
REXP Developer’s recent experience Experience
SEXP Developer’s experience in the specific subsystem Experience

information embedded within code changes. Unlike expert features,
which rely on predefined metrics, semantic features delve into the
deeper meanings and relationships within the code, enabling a more
comprehensive understanding of the code changes. Our approach lever-
ages CodeBERT for semantic feature extraction to enhance the analysis
of software code. CodeBERT, a transformer-based model pre-trained
on a large corpus of code and natural language, excels at understand-
ing the intricate relationships between code tokens [28]. By utilizing
CodeBERT, we can extract semantic features that capture the deeper
meaning and context of the code, beyond what traditional syntactic
analysis can achieve.

The details of the semantic features extractor within JIT-CF are
shown in Fig. 3, which incorporates various types of information,
including commit message, added lines, deleted lines, etc. The term
“Commit message” refers to the description of the submitted commit,
whereas “added lines” and “deleted lines” represent the lines added
and deleted in the commit, respectively.

The input to the CodeBERT model consists of a sequence of tokens
derived from the source code, commit messages, and code changes.
The tokenization process is critical, as it systematically handles various

components of the code, such as added or deleted lines, by differen-
tiating them with specific token markers. For instance, newly added
lines might be tagged with a unique token, distinguishing them from
modified or deleted lines. This nuanced handling ensures that the
structural and semantic integrity of the code is preserved during feature
extraction.

Once tokenized, these sequences are transformed into embeddings—
high-dimensional vector representations that encode not only the syn-
tactical but also the contextual information of each token. CodeBERT
processes these embeddings through multiple transformer layers. These
layers, designed with self-attention mechanisms, enable the model to
capture intricate dependencies and relationships across different parts
of the code. Consequently, the generated feature vectors provide a rich,
semantically informed representation of the code, which is valuable for
downstream tasks.

These high-dimensional feature vectors serve as the foundational
input to our contrastive learning approach. By utilizing CodeBERT’s
extracted features, the model can focus on the most pertinent aspects of
the code, such as subtle changes that might indicate potential defects.
This focus is particularly crucial for JIT defect prediction, where the
goal is to accurately identify defects based on recent changes in the
code repository.

In the original semantic feature extraction phase, CodeBERT ex-
tracts semantic features by processing the textual content of the source
code. Although CodeBERT is effective at capturing both syntactic and
semantic aspects of the code, it still has certain limitations when
handling subtle code changes or semantically similar code snippets.
For instance, subtle changes like variable renaming or slight formatting
adjustments do not affect the logic of the code, but CodeBERT, without
additional handling, may interpret these changes as significant seman-
tic differences, leading to incorrect classification. This sensitivity to
superficial modifications reduces the performance of JIT-DP, hindering
the model’s ability to accurately predict defects.

To address this issue, we introduce a contrastive learning strategy
aimed at enhancing the robustness and discriminative power of feature
representations. Contrastive learning works by maximizing the similar-
ity between positive samples and minimizing the similarity between
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negative samples. Specifically, in our approach, we compare code
snippets with the same defect labels and those with different defect
labels, guiding the model to learn more discriminative features while
ignoring irrelevant shallow-level changes.

Given the specific characteristics of JIT-DP, we adapt the standard
contrastive learning process. Contrastive learning typically operates
based on pairs of positive and negative samples, and in the JIT-DP
context, code changes are the core objects being compared. For each
code sample, we define a positive set comprising code changes with
the same defect status and a negative set consisting of code changes
with different defect statuses.

Algorithm 1: Contrastive learning for JIT-CF in code commits

Input: Code commits C = {C,,C,,...,Cy }, Labels
y=1{y1,¥2,...¥n}, Temperature 7

Output: Optimized Code Commit Embeddings H
1 for each code commit C; do
2 Encode the input code commit C; using CodeBERT to
obtain embedding H;;
3 Define positive set P, = {C, | y, = y;} based on commits
with the same defect status;
4 Define negative set A; = {C, | y, # y;} based on commits
with different defect statuses;
5 for each positive commit C, € P, do
6 L Compute similarity between embeddings H; and H,;:

Z.

i Lps

'p>

7 for each negative commit C, € A; do
8 L Compute similarity between embeddings H; and H,;:
z;,-H,;

9 Compute the contrastive 10ss L.qirase Using the similarities
between positive and negative commits;

10 Update model parameters using backpropagation to
minimize the contrastive 10ss L rasts

1 return Optimized code commit embeddings H;

—

Algorithm 1 describes how we apply contrastive learning to enhance
CodeBERT’s semantic feature extraction process for JIT-DP. In this
algorithm, each input code commit is denoted as C;, where y, represents
its associated label indicating whether the commit is non-defective (y; =
0) or defective (y; = 1). The model first processes C; using CodeBERT to
generate an embedding H;, which captures the syntactic and semantic
features of the code commit. For each anchor code commit C;, a positive
set P, is defined, consisting of all other commits that share the same
defect label as C;. This means that these commits either all introduce
defects or all do not introduce defects, thus forming the set of positive
examples. On the other hand, the negative set A; is composed of
commits that have a different defect label from C;, representing cases
where the commits either introduce defects while C; does not, or vice
versa.

Once the positive and negative sets P, and A, are defined for each
anchor commit, the algorithm computes the similarities between the
embedding H; of the anchor commit and the embeddings of the positive
samples H,, for all p € P;, using the dot product of their feature vectors
z; - z,. Similarly, the similarities between H; and the embeddings of
the negative samples H, for all n € A; are computed. The goal is
to maximize the similarity between the anchor commit and positive
samples while minimizing the similarity with negative samples. This
is achieved through the supervised contrastive loss function, which is
defined as:

1 1 exp(z; - Z,/7)
LsuP:NZmzlogz exp(z; - z,/7)
i il pep, neA; P i n

(€8]

where z; and z, represent the normalized embeddings of the anchor
code commit C; and a positive sample C,, respectively. The numerator
encourages the model to maximize the similarity between the anchor
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commit and positive samples, while the denominator minimizes the
similarity between the anchor commit and negative samples C,. The
temperature parameter r controls the sharpness of the softmax distri-
bution, allowing the model to fine-tune its sensitivity to variations in
the embeddings.

This contrastive learning approach, which leverages the comparison
of code commits based on their defect status, significantly enhances
the model’s robustness and discriminative performance. By focusing on
the true semantic differences related to defects, rather than superficial
syntactic changes, JIT-CF can accurately differentiate between non-
defective and defective code commits. This results in more reliable
defect predictions, even when minor code modifications that do not
affect functionality are present.

3.3. Integrated learning and defect predicting

After enhancing the semantic features through contrastive learning,
the next step in our JIT-CF framework is to integrate expert features.
To integrate the semantic features (768-dimensional vectors) with the
lower-dimensional expert features (14-dimensional vectors), we expand
the expert features to match the dimensionality of the semantic fea-
tures. We achieve this expansion by using a fully connected layer that
transforms the expert feature vector Vgp into a higher-dimensional
representation. The resulting expanded expert feature vector is then
concatenated with the semantic feature vector Vg to form a combined
feature vector V.

After combining the features, we enhance the representation
through fully connected layers to capture complex interactions between
semantic and expert features. To identify the optimal network archi-
tecture for this feature fusion, we systematically tuned the model by
experimenting with twelve different combinations of fully connected
layers (varying between 1 to 3 layers) and activation functions (ReLU,
GELU, ELU, and Leaky ReLU). Each combination was thoroughly evalu-
ated to identify the best-performing configuration that balances feature
learning and prediction accuracy.

This fine-tuning process, comprising extensive experimentation
across multiple network depths and non-linear transformations, is
crucial in enhancing the model’s capacity to learn intricate patterns
within the combined feature space. By carefully selecting the optimal
architecture, we significantly improve JIT-CF’s performance, ensuring
that it can robustly learn from both semantic and expert-defined
features to predict defect-prone code changes effectively.

3.4. Prediction result reporting

In the final stage of our approach, we focus on synthesizing and
communicating the outcomes of the JIT-DP process. This involves
generating comprehensive prediction reports that detail the findings
and insights derived from the analysis. These reports are meticulously
crafted to provide clear and actionable information about potential
defects. Furthermore, the identified defects are systematically docu-
mented within the issue tracking system, ensuring that they are inte-
grated into the ongoing workflow for resolution. This stage is essential
for closing the loop between prediction and action, enabling teams to
address potential issues proactively and maintain high software quality.

4. Experimental evaluation
4.1. Research questions
We aim to evaluate JIT-CF by answering the following four research

questions:

RQ1: How effective is JIT-CF in JIT-DP?

To answer this question, we compare JIT-CF with seven state-of-the-
art approaches for JIT-DP. The objective is to assess the model’s ability
to identify potential defects in code changes before they are merged
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Table 2
Details of Code Commits in JIT-Defects4J.
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Java Project Timeframe #BC #CC % Ratio (Bugs/ALL)
ant-ivy 2005-06-16 - 2018-02-13 332 1,439 18.75% (332/1,771)
commons-bcel 2001-10-29 - 2019-03-12 60 765 7.27% (60/825)
commons-beanutils 2001-03-27 - 2018-11-15 37 574 6.06% (37/611)
commons-codec 2003-04-25 - 2018-11-15 36 725 4.73% (36/761)
commons-collections 2001-04-14 - 2018-11-15 50 1,773 2.74% (50/1,823)
COMMONS-COmpress 2003-11-23 - 2018-11-15 178 1,452 10.92% (178/1,630)
commons-configuration 2003-12-23 - 2018-11-15 155 1,683 8.43% (155/1,838)
commons-dbcp 2001-04-14 - 2019-03-12 58 979 5.59% (58/1,037)
commons-digester 2001-05-03 - 2018-11-16 19 1,067 1.76% (19/1,086)
commons-io 2002-01-25 - 2018-11-16 73 1,069 6.39% (73/1,142)
commons-jcs 2002-04-07 - 2018-11-15 88 743 10.59% (88/831)
commons-lang 2002-07-19 - 2018-10-10 146 2,823 4.92% (146/2,969)
commons-math 2003-05-12 - 2018-02-15 335 3,691 8.32% (335/4,026)
commons-net 2002-04-03 - 2018-11-14 117 1,004 10.44% (117/1,121)
commons-scxml 2005-08-17 - 2018-11-16 47 497 8.64% (47/544)
commons-validator 2002-01-06 - 2018-11-19 36 562 6.42% (36/598)
commons-vfs 2002-07-16 - 2018-11-19 114 996 10.27% (114/1,110)
giraph 2010-10-29 - 2018-11-21 163 681 19.31% (163/844)
gora 2010-10-08 - 2018-06-18 39 514 7.05% (39/553)
opennlp 2008-09-28 - 2018-06-18 91 995 8.38% (91/1,086)
parquet-mr 2012-08-31 - 2018-07-01 158 962 14.11% (158/1,120)
ALL 2,332 24,987 8.54% (2,332/27,319)

into code repository. This evaluation will help determine whether
JIT-CF provides significant improvements over existing methods.

RQ2: How does contrastive learning influence the performance
of JIT-CF?

In JIT-CF, contrastive learning is fundamental, aiming to improve
the model’s capacity to distinguish between similar and dissimilar
code changes. This research question investigates the impact of se-
mantic features, enhanced through contrastive learning, on the model’s
performance.

RQ3: What impact does the optimization of model architecture,
incorporating feature fusion, have on JIT-CF?

For JIT-CF, optimizing the model architecture incorporating feature
fusion is crucial for enhancing its ability to capture complex patterns
in data. This RQ examines how modifications in the configuration of
layers and activation functions affect performance. By analyzing these
optimizations, we aim to identify the optimal design strategy to bal-
ance model complexity and prediction performance, thereby providing
valuable insights for future JIT-DP models.

4.2. Datasets

For our experiments, we utilize the JIT-Defects4J [28] dataset,
which serves as a comprehensive and widely-adopted benchmark for
JIT defect prediction research. Specifically, the dataset includes 27,319
code commit records sourced from 21 well-maintained Java open-
source projects, spanning diverse domains such as libraries, utilities,
and web frameworks. Among these commits, 2332 are labeled as
defective, while the remaining 24,987 are labeled as non-defective. The
details of the dataset related to defect prediction are shown in Table 2.

The JIT-Defects4J [28]dataset is meticulously curated to capture
real-world software development patterns, providing not only commit
histories but also detailed defect information that reflects actual soft-
ware bugs encountered during the development process. This dataset
includes a rich set of features, such as code metrics (e.g., lines of
code changed, file diffusion), project-level attributes, and developer
activities. These features make it highly suitable for training deep
learning models that demand an in-depth understanding of both code
structure and commit metadata.

4.3. Evaluation metrics

To evaluate the performance of JIT-CF, we employ two categories
of evaluation metrics: effort-agnostic performance measures and
effort-aware performance measures. These metrics offer a compre-
hensive understanding of the model’s performance, considering both
general prediction accuracy and the practical effort required in real-
world scenarios.

Effort-agnostic performance measures. focus on the overall prediction
quality without considering the associated effort for identifying defects.
The key metrics in this category are F1-score and AUC.

Fl-score is widely used in classification tasks, particularly for
imbalanced datasets. It is the harmonic mean of precision and recall,
balancing the trade-off between the two. The F1-score is defined as:

Fl-score = 2 X w @
Precision + Recall

Precision = _Trr 3)
TP+ FP
TP
Recall = ———
€ TP+ FN )

where TP, FP, and FN represent true positives, false positives, and
false negatives, respectively.

Area Under the ROC Curve (AUC) measures the area under the
Receiver Operating Characteristic (ROC) curve, which plots the true
positive rate (TPR) against the false positive rate (FPR) at various
thresholds. AUC provides a scalar value that summarizes the model’s
performance across all thresholds:

1
AUC = / TPR(x)dx )
0

Effort-aware performance measures. incorporate the practical cost and
effort associated with defect detection, making them more relevant
to real-world scenarios where reviewing code changes requires signif-
icant effort. The key metrics in this category are Recall@20%Effort,
Effort@20%Recall, and Popt.

Recall@20%Effort (R@20%E) evaluates the proportion of defects
identified within the top 20% of the riskiest code changes, as predicted
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by the model. It is calculated as:

k
. TP,
R@20%E = %
> TP,

i=1 i

(6)

where k is the number of changes constituting 20% of the total effort,
and n is the total number of changes.

Effort@20%Recall (E@20%R) indicates the effort required to de-
tect 20% of all defects. It reflects the percentage of code that needs to
be inspected to achieve this recall level. The formula is:

m
E@20%R = 2y 106
>V LOC,

i=1 i

(7)

where m is the number of changes needed to achieve 20% recall, LOC;
represents the lines of code in change i, and N is the total number of
changes.

Popt is on the basic of the concept of the Alberg diagram [53] which
evaluates the model’s performance in prioritizing defective changes by
comparing the effort spent reviewing changes the model prioritized to
an optimally prioritized effort. It is calculated as:

Z?:] (Rankmodel(i )= Rankoptimal(i ))2
i Rankyyorg (1) — Rank o ima1 (1)

where, Rank;,,q¢(i) is the rank assigned to change i by the model,
Rankpimal (i) is the optimal rank, and Rank,,o () is the worst possible
rank.

By considering both effort-agnostic and effort-aware metrics, we ob-
tain a more comprehensive evaluation of our defect prediction model’s
performance, addressing its prediction accuracy and the real-world
effort required for defect identification.

Popt=1-— ®

4.4. Baseline methods

We evaluate our proposed model against seven state-of-the-art
methods: LApredict, Deeper, DeepJIT, CC2Vec, Yan et al.’s work,
JITLine, and JIT-Fine. The selection of these baselines is driven by their
established effectiveness and relevance in the field of just-in-time defect
prediction. Each of these methods represents a significant advancement
in leveraging machine learning techniques to predict software defects
based on code changes and commit histories.

(1) LApredict [26]: LApredict uses Logistic Regression on hand-
crafted features from commit messages and code changes, such as
lines of code added or deleted. Its simplicity and effective feature
engineering make it a solid baseline.

(2) Deeper [24]: Deeper employs Convolutional Neural Networks
(CNNs) to learn feature representations from code changes. It processes
code diffs as token sequences, capturing local patterns with multiple
convolutional layers.

(3) DeepJIT [23]: DeepJIT combines Long Short-Term Memory
(LSTM) networks and CNNs to capture sequential and spatial features
from commit messages and code changes. It processes each separately
before combining their representations.

(4) CC2Vec [25]: CC2Vec encodes code changes into vector rep-
resentations using hierarchical attention to focus on relevant parts. It
generates context-aware embeddings for defect prediction.

(5) Yan et al.’s Work [38]: Yan et al. propose a hybrid model
that integrates traditional machine learning with deep learning. It uses
handcrafted features from code changes and commit messages as inputs
to a deep neural network.

(6) JITLine [37]: JITLine integrates both syntactic and semantic
features by utilizing AST-based features and word embeddings ex-
tracted from commit messages. This comprehensive approach enhances
its predictive performance, making it highly effective in identifying
software defects.

(7) JIT-Fine [28]: JIT-Fine extends JITLine by integrating expert-
defined features with semantic features from pre-trained models like
CodeBERT. It uses a multi-layer fully connected network and attention
mechanisms for improved prediction performance.

Information and Software Technology 182 (2025) 107706

Table 3

Defect prediction of JIT-CF compared against seven baselines.
Methods Fl-score AUC R@20%E E@20%R Popt
LApredict 0.059 0.694 0.625 0.020 0.814
Yan et al. 0.062 0.675 0.615 0.022 0.819
Deeper 0.246 0.682 0.638 0.021 0.827
DeepJIT 0.293 0.775 0.676 0.014 0.860
CC2Vec 0.248 0.791 0.676 0.014 0.861
JITLine 0.261 0.802 0.705 0.015 0.883
JIT-Fine 0.431 0.881 0.773 0.010 0.927
JIT-CF 0.491 0.896 0.831 0.010 0.944

4.5. Experimental settings

The Experiment was conducted on a server equipped with an
NVIDIA GeForce RTX 3090 GPU. In our experiments, we adopted
the same experimental settings as described in JIT-Fine [28]. We
partitioned the JIT-Defects4J dataset into disjoint training, validation,
and test sets, using a random split ratio of 8:1:1. Our model leverages
CodeBERT with a maximum input sequence length of 512 tokens. We
set the maximum number of training epochs to 50, starting with an
initial learning rate of 5e—4, which gradually increased from 0 during
the warm-up phase. For the contrastive learning component, we set
the temperature parameter (r) to 0.7 and employed a batch size of 32
per GPU with gradient accumulation steps of 32. To ensure efficient
training and prevent overfitting, we implemented early stopping with
a patience of 10 epochs.

5. Experiment results
5.1. RQI. Effectiveness of JIT-CF

To demonstrate the effectiveness of JIT-CF, we compared JIT-CF
with seven baselines on JIT-Defects4J. The experimental results are
presented in Table 3.

From Table 3, we observe that our proposed method, JIT-CF, out-
performs all the baselines across all evaluated metrics. JIT-CF achieves
the highest performance in terms of F1-score, AUC, R@20%E, and Popt,
while maintaining a competitive results for E@20%R. Specifically, JIT-
CF improves the Fl-score by 13.9% relative to the current best baseline,
JIT-Fine. The corresponding relative improvement in AUC is 0.65%,
demonstrating the model’s enhanced ability to distinguish between
defective and non-defective changes. Furthermore, JIT-CF increases
the R@20%E by 7.29%, highlighting its efficiency in identifying a
larger proportion of actual defects within the top 20% of predictions.
Although the E@20%R remains consistent with the baseline, the Popt
metric shows a relative improvement of 1.86%, indicating a more
optimized effort in inspecting the most defect-prone code changes.

In essence, our results indicate that the JIT-CF surpasses existing
works that utilize traditional and deep learning-based methods for JIT-
DP. Numerous prior studies have demonstrated the effectiveness of
various machine learning and deep learning models for defect pre-
diction. However, the results presented in Table 3 demonstrate that
through the integration of contrastive learning and feature fusion, our
method outperforms all other baselines on the JIT-Defects4J dataset.

Several factors contribute to this performance enhancement. First,
contrastive learning significantly enhances the feature representations
by encouraging the model to distinguish between subtle differences
in code changes. This enhancement is crucial in JIT defect prediction
task, where minor variations can indicate the presence of defects.
Second, the multi-layer fully connected architecture allows the model
to capture complex interactions between features, further boosting
its prediction performance. These combined factors enable JIT-CF to
effectively outperform other methods.
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Table 4
Impact of Semantic and Expert Features with and without Contrastive Learning on
Model Performance.

Setting Fl-score AUC R@20%E E@20%R Popt

EF 0.230 0.661 0.632 0.020 0.825
SF 0.375 0.846 0.731 0.015 0.901
SF+CL 0.396 0.851 0.739 0.014 0.911
EF+SF 0.431 0.881 0.773 0.010 0.927
EF+SF+CL 0.491 0.896 0.831 0.010 0.944

Answer to RQ1: JIT-CF outperforms all baselines in terms
of Fl-score, AUC, R@20%E, and Popt. The Fl-score of JIT-
CF is 13.9% higher than the best baseline method, JIT-Fine,
indicating its superior performance in JIT-DP.

5.2. RQ2. Effectiveness of contrastive learning

To address RQ2, we conducted ablation experiments to evaluate
the effectiveness of contrastive learning in JIT-CF. We compared five
experimental configurations: Expert Features (EF), Semantic Features
(SF), Semantic Features with Contrastive Learning (SF+CL), Expert
Features and Semantic Features (EF+SF), and Expert Features and
Semantic Features with Contrastive Learning (EF+SF+CL). The results
are detailed in Table 4.

The EF+SF+CL configuration consistently outperforms other setups
across all metrics. When contrastive learning is added to SF alone,
the Fl-score improves by 5.6%, AUC increases slightly, and R@20%E
rises, indicating a higher capture of true positives. Although E@20%R
decreases marginally, Popt improves, suggesting better prioritization of
defect-prone changes.

Comparing EF to EF+SF, the inclusion of semantic features leads
to a significant performance boost: the Fl-score increases by 87.4%,
from 0.230 to 0.431, and AUC improves by 33.2%. This highlights the
importance of integrating expert and semantic features for capturing
more meaningful information about the code changes.

In the comparison EF+SF and EF+SF+CL, the impact is even more
pronounced: Fl-score rises by 13.9%, from 0.431 to 0.491, demon-
strating a significant increase in defect identification capability. AUC
improves by 1.7%, indicating better separation between defective and
non-defective changes. R@20%E also sees a 7.5% improvement, and
Popt rises from 0.927 to 0.944, confirming the efficiency of contrastive
learning in optimizing defect prioritization.

To further investigate the impact of contrastive learning, we per-
formed a t-SNE visualization of CodeBERT and CodeBERT with con-
trastive learning (CodeBERT_CL). t-SNE is a widely used dimensional-
ity reduction technique that maps high-dimensional data to a lower-
dimensional space (typically 2D or 3D) while preserving local sim-
ilarities between data points. This makes it particularly useful for
visualizing complex data distributions and identifying clusters or sepa-
rations in the data. As shown in Fig. 4. in these visualizations, red points
represent defective instances, and blue points represent non-defective
instances.

In Fig. 4(a), which representing CodeBERT without contrastive
learning, there is a significant overlap between defective and non-
defective instances, particularly in the boundary areas. This suggests
that CodeBERT alone struggles to clearly distinguish between the two
classes. Conversely, Fig. 4(b) demonstrates that the introduction of
contrastive learning leads to a much clearer separation between defec-
tive and non-defective instances, with fewer overlapping points. This
improved separation highlights how contrastive learning enhances the
model’s ability to discriminate between risky and safe code changes.

The effectiveness of contrastive learning in enhancing the model’s
discriminative power can be attributed to its ability to better represent
code features. By effectively separating defective and non-defective
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Table 5
Performance of using different fully connected layers and activation functions.

Layers Activation Function Fl-score AUC R@20%E E@20%R Popt

1 layer  ReLU 0.424 0.847 0.789 0.011 0.927
1 layer GELU 0.425 0.842 0.770 0.012 0.920
1 layer  Leaky ReLU 0.420 0.845 0.774 0.012 0.922
1 layer ELU 0.428 0.843 0.772 0.012 0.921
2 layers ReLU 0.491 0.896 0.831 0.010 0.944
2 layers GELU 0.454 0.887 0.793 0.012 0.935
2 layers Leaky ReLU 0.466 0.882 0.804 0.010 0.936
2 layers ELU 0.447 0.889 0.802 0.012 0.935
3 layers ReLU 0.431 0.855 0.775 0.011 0.910
3 layers GELU 0.435 0.850 0.768 0.011 0.908
3 layers Leaky ReLU 0.428 0.852 0.770 0.011 0.909
3 layers ELU 0.426 0.851  0.769 0.011 0.908

instances in the feature space, contrastive learning enables the model
to focus on underlying structural and semantic differences, such as
subtle changes caused by variable renaming or code refactoring. This
fine-grained feature extraction capability allows JIT-CF to perform
exceptionally well in handling scenarios where the code changes ap-
pear similar on the surface but differ logically, thereby significantly
improving defect detection accuracy.

Answer to RQ2: Contrastive learning enhances JIT-CF’s abil-
ity to differentiate between defective and non-defective code
changes by improving its capacity to capture subtle struc-
tural and semantic differences. This leads to more effective
identification of defective code changes.

5.3. RQ3: Effectiveness of model architecture optimization

To explore the impact of model architecture optimization on the
performance of the JIT-CF model, we investigated two main factors: the
number of fully connected layers and the choice of activation functions.
Our goal was to identify an architecture that effectively balances model
complexity and performance across key metrics, including F1-score,
AUC, R@20%E, E@20%R, and Popt.

We experimented with a total of 12 different combinations, consist-
ing of three configurations for the number of layers (1 layer, 2 layers,
and 3 layers) paired with four different activation functions (ReLU,
GELU, Leaky ReLU, and ELU). The detailed performance results are
presented in Table 5.

From Table 5, it is evident that performance varies significantly
depending on both the number of layers and the activation function
used. A key trend observed is that increasing the depth of the model
(from 1 to 3 layers) generally improves performance initially, but
can lead to diminishing returns and even degradation in some cases.
Notably, the 2-layer configurations consistently outperform both the 1-
layer and 3-layer models, suggesting that two layers strike the optimal
balance between model capacity and generalization ability. Among
these, the configuration with ReLU as the activation function achieves
the best overall results, achieving an Fl-score of 0.491, an AUC of
0.896, and a Popt of 0.944.

The performance advantage of using 2 layers with ReLU is evident
across all metrics. While the 1-layer models suffer from insufficient
capacity to learn complex patterns in the code changes, the 3-layer
models introduce additional depth that does not translate into im-
proved performance, likely due to overfitting and increased training
difficulty. This effect is visible in the drop in metrics such as F1-
score and AUC when moving from 2 layers to 3 layers across different
activation functions.

The superior performance of the 2-layer model with ReLU can be
attributed to its balanced architecture. With two layers, the model has
enough capacity to capture complex interactions and patterns within
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(a) t-SNE of CodeBERT without contrastive
learning
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(b) t-SNE of CodeBERT enhanced with con-
trastive learning

Fig. 4. t-SNE visualization comparison between CodeBERT and CodeBERT enhanced with contrastive learning.

the feature space without becoming overly complex. ReLU’s effective-
ness as the activation function lies in its simplicity and efficiency. It
introduces non-linearity without complicating the gradient flow during
training, helping the model learn effectively from the data. ReLU also
mitigates issues like vanishing gradients, which is crucial for models
with deeper architectures.

Answer to RQ3: The best configuration for JIT-CF is a two-
layer architecture with ReLU activation. This setup maximizes
model performance key metrics, achieving the optimal bal-
ance between model complexity and generalization capability,
thereby enhancing JIT-DP.

6. Discussion
6.1. How does JIT-CF perform in Just-In-Time defect localization?

Our approach, similar with JIT-Fine, employs a unified model to
concurrently perform JIT defect prediction and defect localization.
CodeBERT, as a pre-trained model for code representation, plays a
crucial role in this process by extracting semantic and contextual
features from code changes, enabling it to rank lines of code based
on their likelihood of being defective. The embeddings generated by
CodeBERT allow the model to identify potential defect-prone areas
within a commit effectively.

Furthermore, the application of contrastive learning enhances these
feature representations, significantly improving the model’s ability to
differentiate between defective and non-defective lines, even in cases
of minor code variations. This enhances the precision of defect local-
ization, as the model learns to focus on relevant differences, resulting
in better identification and ranking of defect-prone lines within code
changes.

We evaluate its performance of our approach against three baseline
methods: JITLine [37], Yan et al. [38], and JIT-Fine [28]. The evalua-
tion employs several metrics, including Top-5 and Top-10
accuracy, Recall@20%Effort);,. (R@20%E;,.), Effort@20%Recall;,.
(E@20%Ry;,e), and Initial False Alarmyy,, (IFAj,.). The results are
presented in Table 6.

Top-5 and Top-10 accuracy metrics assess the model’s capability
to accurately identify defects within its top 5 and top 10 predictions,
respectively. R@20%E;,. evaluates the proportion of defective lines
that can be found with the top 20% of lines of code ranked by risk,
given a certain effort. A higher value in this metric indicates more
accurate identification of defect-prone lines. E@20%R;;,. measures the
effort required to identify 20% of the actual defective lines, typically
expressed in LOC. A lower value means that the developers can locate
defect on these lines with reduced effort. IFA;,. reflects the amount
of code that needs to be inspected before encountering the first false

10

Table 6

Defect localization of JIT-CF compared against baselines.
Methods Top-5 Top-10 R@20%E, E@20%R, IFA,
JITLine 0.104 0.098 0.157 0.332 24.2
Yan et al. 0.193 0.195 0.143 0.345 15.3
JIT-Fine 0.212 0.214 0.208 0.318 10.8
JIT-CF 0.229 0.239 0.213 0.318 10.3

alarm, with a lower value indicating fewer false positives early in the
review process.

As shown in Table 6, JIT-CF consistently outperforms the baseline
methods across all evaluation metrics, demonstrating its superior per-
formance in defect localization. Notably, JIT-CF achieves the highest
Top-5 accuracy of 0.229 and Top-10 accuracy of 0.239, which are
higher than those of JIT-Fine, Yan et al. and JITLine. This indicates
that JIT-CF is more effective in ranking the top defective lines within
code commits.

JIT-CF yields the best performance in R@20%E, with a value of
0.213, and the lowest E@20%R; at 0.318. These results suggest that
JIT-CF requires less effort to locate the same amount of defective lines
compared to the other baselines, making it more efficient for developers
in real-world scenarios. Additionally, the IFA, is also reduced to 10.3,
indicating a significant decrease in false positives generated by the
model, further enhancing its usability in practice.

6.2. What impact would more fully connected layers have on the model’s
performance?

In this section, we analyze the impact of increasing the depth of
fully connected layers during the feature fusion process in JIT-CF. We
extend our investigation to explore deeper architectures with up to 7
layers. Given that ReLU consistently achieved the best performance in
RQ3, all experiments in this section are conducted using ReLU as the
default activation function.

Our objective was to investigate whether increasing the number of
fully connected layers could enhance the model’s capability to capture
complex patterns or, conversely, lead to performance degradation due
to overfitting or computational inefficiencies. As shown in Fig. 5, we
observe that while the performance of the model improved initially
as we increased the layers from 1 to 2. However, any further in-
crease in the number of layers led to either stagnation or a decline in
performance.

Notably, the two-layer architecture emerged as the best performer
across multiple metrics, achieving an optimal balance between model
capacity and generalization. Adding more layers beyond two did not
yield meaningful performance gains; instead, it often resulted in slight
declines across metrics like Fl-score, AUC, Recall@20%Effort, and
Popt. For instance, while the F1-score peaked at 0.491 with two layers,
it gradually decreased with more layers, with a marked drop at seven
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Fig. 5. Performance impact of 1 to 7 fully connected layers on JIT-CF.

Table 7

Performance comparison of JIT-CF using different pre-trained models.
Model Fl-score =~ AUC Recall@20%E  Effort@20%R  Popt
CodeBERT 0.491 0.896  0.831 0.010 0.944
GraphCodeBERT  0.481 0.886 0.821 0.012 0.922
CodeT5 0.483 0.876 0.811 0.011 0.912
UniXcoder 0.473 0.871 0.813 0.011 0.921

layers. Similarly, AUC and other metrics followed this trend, confirming
that deeper architectures do not provide additional benefits in this
context.

These results suggest that increasing the model depth beyond two
layers introduces complexity that likely leads to overfitting, thereby
reducing the model’s ability to generalize to unseen examples. Fur-
thermore, the marginal gains in some metrics do not justify the added
computational cost, particularly when the overall performance begins
to degrade as the model depth increases.

6.3. How do different pre-trained models impact JIT-CF’s performance?

To explore the robustness and versatility of JIT-CF, we evaluated
our framework using various pre-trained models, including CodeBERT,
GraphCodeBERT, CodeT5, and UniXcoder [35,54-56]. The results are
summarized in Table 7.

The results indicate that CodeBERT achieved the highest perfor-
mance across all metrics, suggesting its effectiveness in capturing se-
mantic and syntactic features for JIT defect prediction. GraphCode-
BERT, which incorporates data flow information, performed slightly
lower than CodeBERT but still demonstrated strong performance. This
suggests that while data flow information is useful, the general seman-
tic understanding provided by CodeBERT is more critical for defect
prediction in this context. CodeT5, designed for code understanding
and generation tasks, showed competitive results but was slightly less
effective, likely due to its focus on broader code generation rather
than specific defect detection. UniXcoder, which is optimized for cross-
modal tasks, achieved the lowest performance among the tested mod-
els. This may be attributed to its training objectives, which are less
aligned with the specific needs of defect prediction. Overall, these
findings highlight the importance of selecting appropriate pre-trained
models based on the specific requirements of the downstream task.

6.4. Threats to validity

In this subsection, we discuss potential threats to the validity of our
research results and the measures taken to mitigate them.
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Threats to internal validity primarily concern factors such as
hyperparameter selection that could influence experimental outcomes.
JIT-CF depends on hyperparameters such as learning rate, batch size,
and the number of layers, all of which can significantly affect its
performance. To mitigate this, we conducted comprehensive exper-
iments to choose reasonable and stable parameter values based on
standard practices and preliminary trials. While our main objective was
to demonstrate the model’s effectiveness rather than optimize every
parameter, we believe that the chosen configurations fairly reflect the
capabilities of JIT-CF.

Threats to external validity involve the generalizability of our results
to other datasets and programming languages. To alleviate this threat,
our evaluation was conducted on the JIT-Defects4J dataset, a widely
adopted benchmark in JIT defect prediction research. Despite this,
the dataset consists mainly of Java projects, which may limit the
applicability of our findings to other languages and contexts. To address
this, we made efforts to ensure that the design of JIT-CF remains
flexible and applicable to other domains, although our experiments
were focused on this specific dataset. When considering the application
of JIT-CF to projects developed in other programming languages, sev-
eral challenges may arise, including syntactic and semantic differences
between languages, the availability and quality of pre-trained models,
and language-specific coding practices. These factors may require ad-
justments to the semantic feature extraction process and the selection
of expert features to better fit the context of different languages.

Threats to construct validity relate to the suitability of the metrics
used to evaluate JIT-CF. To alleviate this threat, we employed a set
of well-established metrics, including Fl-score, AUC, Recall@20%E,
Effort@20%R, and Popt, to provide a balanced assessment of the
model’s performance. Since these metrics are widely used in defect
prediction literature, they provide a comprehensive view of the model’s
predictive and effort-aware capabilities. However, to mitigate potential
issues with class imbalance in the dataset, we included effort-aware
metrics like R@20%E and E@20%R to ensure the robustness of our
evaluation.

7. Related work
7.1. Just-in-Time Defect Prediction

The field of Just-In-Time Defect Prediction has undergone signif-
icant evolution, starting from early work that relied on traditional
handcrafted features to predict software defects. Kamei et al. [20]
utilized features such as the number of modified lines, developer experi-
ence, and change history to identify potential defects. These traditional
features became widely used in JIT-DP models. However, a debate
emerged around the relative effectiveness of simple versus complex fea-
tures. Studies like [57] showed that simpler models can often perform
as well as, or even better than, complex ones, questioning the need for
overly intricate features in JIT-DP.

As limitations of traditional feature-based models — such as their
generalizability across projects — became apparent, deep learning
approaches gained traction. Models like DeepJIT [23] and CC2Vec [25]
leveraged semantic information directly from code changes. Unlike
traditional models, these deep learning methods automatically learn
feature representations, which enhances prediction performance and
model robustness.

Recent advancements in JIT-DP have focused on integrating expert-
defined features with semantic features to achieve better performance.
For example, JIT-Fine [28] combines semantic features from Code-
BERT with expert features, demonstrating significant improvements in
defect prediction accuracy. Another notable work is MOJ-SDP [58],
which models JIT-DP as a multi-objective optimization problem by
defining two conflicting optimization goals. This approach leverages
the complementary nature of expert metrics and semantic metrics
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through model-level fusion, effectively combining these metrics using
techniques like the maximum rule.

Different from previous studies, our proposed JIT-CF framework
builds on these advancements by introducing contrastive learning to
further enhance semantic feature representation. Unlike existing mod-
els such as MOJ-SDP and JIT-Fine, which rely solely on fusing expert
and semantic metrics, JIT-CF leverages contrastive learning to max-
imize the similarity within positive pairs and minimize it between
negative pairs. This approach significantly improves the model’s ability
to distinguish between similar code changes and enhances its robust-
ness against noisy labels. Additionally, JIT-CF optimizes the feature
fusion process through careful architecture design, specifically using
a two-layer fully connected network with ReLU activation. This con-
figuration allows the model to capture complex interactions between
semantic and expert features, leading to superior performance.

7.2. Contrastive learning in pre-trained models

Contrastive learning has emerged as a powerful technique for learn-
ing robust representations by contrasting positive and negative sam-
ples [59,60]. Its application in pre-trained models has shown significant
improvements across various tasks. The central idea is to bring seman-
tically similar samples closer in feature space while pushing dissimilar
samples further apart. This approach has been successfully integrated
into pre-trained models like BERT and its variants [34,61].

Contrastive learning often uses data augmentation techniques to
generate positive and negative pairs [62]. Methods like synonym re-
placement, back-translation, and random cropping of text segments are
commonly employed to create diverse examples, enabling the model to
learn more robust representations. By contrasting positive and negative
pairs, the model captures fine-grained differences in data, leading to
enhanced performance in downstream tasks.

In pre-trained language models, contrastive learning has been em-
ployed to improve the quality of learned representations. Researchers
have explored supervised contrastive learning for fine-tuning BERT [61,
63,64], yielding improvements in sentence-level classification tasks.
Additionally, contrastive learning has also been applied in entity and
relation extraction tasks, showcasing its versatility and effectiveness
across different applications.

Despite its success in many NLP tasks, contrastive learning has seen
limited application in JIT-DP. This study bridge the gap by integrating
contrastive learning with a pre-trained model for JIT-DP, demonstrat-
ing significant performance improvements through enhanced feature
representations and improved generalization.

8. Conclusion and future work

In this paper, we introduce JIT-CF, a framework for just-in-time
defect prediction that leverages the advantages of contrastive learn-
ing and optimized feature fusion. By integrating contrastive learning
with CodeBERT, JIT-CF enhances the semantic representations of code
changes, thereby improving their discriminative capabilities. A key
aspect of our approach is the architecture optimization during feature
fusion, specifically through the selection of a two-layer fully connected
network with ReLU activation, which is crucial for boosting the model’s
performance and robustness.

Our experiments on the JIT-Defects4J dataset demonstrate that JIT-
CF significantly outperforms state-of-the-art baselines such as JIT-Fine
and JITLine. The results confirm that the combination of contrastive
learning for semantic feature extraction and architecture optimization
in feature fusion effectively enhances JIT defect prediction perfor-
mance. In future, we plan to apply JIT-CF to projects developed in other
programming languages and explore more advanced contrastive learn-
ing methods to further enhance the model’s capabilities. Additionally,
we aim to investigate more sophisticated feature fusion techniques to
optimize the model’s overall performance and generalizability.
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