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ABSTRACT

Smoking continues to be a major preventable cause of death worldwide, affecting millions through
damage to the heart, metabolism, liver, and kidneys. However, current medical screening methods
often miss the early warning signs of smoking-related health problems, leading to late-stage diagnoses
when treatment options become limited. This study presents a systematic comparative evaluation
of machine learning approaches for smoking-related health risk assessment, emphasizing clinical
interpretability and practical deployment over algorithmic innovation. We analyzed health screening
data from 55,691 individuals, examining various health indicators, including body measurements,
blood tests, and demographic information. We tested three advanced prediction algorithms - Random
Forest, XGBoost, and LightGBM - to determine which could most accurately identify people at
high risk. This study employed a cross-sectional design to classify current smoking status based
on health screening biomarkers, not to predict future disease development. Our Random Forest
model performed best, achieving an Area Under the Curve (AUC) of 0.926, meaning it could
reliably distinguish between high-risk and lower-risk individuals. Using SHAP (SHapley Additive
exPlanations) analysis to understand what the model was detecting, we found that key health markers
played crucial roles in prediction: blood pressure levels, triglyceride concentrations, liver enzyme
readings, and kidney function indicators (serum creatinine) were the strongest signals of declining
health in smokers. These results demonstrate that artificial intelligence can serve as a powerful
tool for early disease detection in smokers. By identifying at-risk individuals before conventional
symptoms appear, healthcare providers could intervene earlier with personalized prevention strategies.
Implementing these predictive systems in public health programs could reduce the enormous burden
smoking places on healthcare systems while shifting medical care from reactive treatment to proactive
prevention.
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Machine Learning Models for Predicting Smoking-Related Health Decline and Disease Risk

1 Introduction

Smoking remains one of the most pressing global public health challenges, representing a complex interplay of
addiction, behavioral patterns, and progressive biological damage[1]. Each year, tobacco use is responsible for over 8
million deaths worldwide, with the World Health Organization estimating that nearly half of all smokers will ultimately
succumb to smoking-related illnesses [2, 3]. While lung cancer and chronic obstructive pulmonary disease (COPD)
are the most widely recognized consequences, smoking also drives cardiovascular disease, metabolic dysfunction, and
systemic inflammation that can compromise virtually every organ system [4, 5]. Perhaps most concerning is that this
damage frequently progresses insidiously over years, often becoming irreversible before clinical symptoms manifest[6].
Despite decades of comprehensive public health initiatives and overwhelming scientific evidence, approximately 1.3
billion people worldwide continue to use tobacco products[7]. Many smokers harbor what might be termed "optimistic
bias," believing they can quit before substantial harm occurs or that they will somehow avoid the worst outcomes. The
non-linear trajectory of smoking-related decline—characterized by years of subclinical damage that suddenly manifests
as severe disease—highlights critical limitations in reactive diagnostic approaches that await obvious symptoms before
intervention. These delays result in lost opportunities for prevention and early therapeutic intervention. Our research
aims to transform this reactive paradigm by developing advanced predictive tools that can detect risk at substantially
earlier stages[8, 9]. We hypothesize that smoking leaves distinct, systemic biological signatures across cardiovascular,
metabolic, hepatic, and oral health pathways that machine learning algorithms can identify long before conventional
clinical thresholds are exceeded[10, 2]. By simultaneously analyzing these diverse biomarkers, we aim to construct
a more comprehensive and clinically relevant assessment of smoking-related health decline. This holistic approach
addresses significant gaps in prior research, which has often concentrated on single disease endpoints or limited feature
sets, thereby constraining real-world applicability[11, 12, 13].

A critical innovation in our study is the direct comparison of machine learning models with established clinical risk
assessment tools, including the Framingham cardiovascular risk score. This benchmarking exercise tests whether
advanced algorithms provide measurable advantages over standard, widely validated approaches—a crucial step for
building confidence among clinicians and policymakers who will ultimately implement these systems in practice. A
fundamental principle guiding our work is model interpretability. We employ SHAP (SHapley Additive exPlanations)
values to elucidate how each variable contributes to individual risk predictions [14, 15]. This transparency is essential for
fostering clinician trust and facilitating shared decision-making, positioning these tools as decision support rather than
replacements for professional judgment. We also address practical considerations for clinical implementation, including
integration into existing healthcare workflows, appropriate clinical responses to risk alerts, and responsible management
of false positive and false negative predictions to minimize potential harm. Understanding these operational aspects is
critical for successful translation from research to practice.

Our study places particular emphasis on algorithmic fairness by thoroughly characterizing the geographic, ethnic,
and socioeconomic distribution of our study population. We explicitly analyze how data quality issues—such as
extreme laboratory value outliers—might influence model performance and generalizability. This attention to equity
ensures that our models are not only technically sound but also ethically responsible and applicable across diverse
populations. Through the integration of advanced algorithms, rigorous comparison with traditional assessment tools,
realistic evaluation of clinical adoption pathways, and strong emphasis on equity, we aim to advance predictive medicine
for smoking-related disease beyond academic exercises toward genuinely impactful, patient-centered applications. By
identifying at-risk individuals before irreversible damage occurs, these tools could enable more timely interventions,
facilitate targeted prevention strategies, and ultimately improve public health outcomes for millions of people affected
by tobacco use. This investigation employs a cross-sectional analytical framework wherein all predictor variables
(demographic characteristics, anthropometric measurements, and biochemical biomarkers) and the outcome variable
(current smoking status) were collected simultaneously during a single health screening visit. The prediction task is
therefore classification-identifying individuals who are current smokers based on their present physiological state,
rather than prognosis, which would entail predicting future disease onset or health decline over time. No longitudinal
follow-up data were available; thus, temporal causality cannot be inferred from our results. The clinical utility of this
approach lies in leveraging routinely collected health screening data to detect physiological signatures of smoking
exposure that may indicate early-stage damage before overt clinical symptoms manifest, thereby enabling timely
intervention and smoking cessation support.

Our contribution lies not in novel algorithm development, but in rigorous comparative evaluation of established machine
learning methods applied to comprehensive multi-system health screening data, with particular emphasis on clinical
interpretability through SHAP analysis, validation against traditional risk scores (Framingham), and practical consider-
ations for real-world deployment. This systematic approach addresses critical gaps in prior smoking risk prediction
research, which often focuses on single disease endpoints or lacks adequate attention to explainability—essential
prerequisites for clinical adoption.
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2 Related Study

The prediction and assessment of smoking-related health risks has garnered substantial research attention over the
past decades, with increasing momentum following the integration of machine learning methodologies into public
health applications. A considerable body of literature has examined predictive models for estimating smoking status
or stratifying smokers based on routinely collected health variables. Early investigations predominantly employed
traditional statistical approaches, particularly logistic regression, to establish associations between smoking behavior
and cardiopulmonary conditions[16, 17]. While these conventional methods achieved acceptable accuracy for basic
classification tasks, they demonstrated inherent limitations in capturing the complex, non-linear relationships that
characterize smoking’s biological effects across multiple physiological systems.

The past decade has witnessed a paradigm shift toward more sophisticated algorithmic approaches for smoking risk
assessment. Researchers have increasingly leveraged advanced machine learning techniques, including decision trees,
support vector machines, and gradient boosting methods, to enhance smoking-risk stratification capabilities[18, 19].
These computational approaches have shown promising performance in predicting smoking status and specific disease
outcomes, particularly for conditions such as lung cancer and chronic obstructive pulmonary disease[20, 21]. The
improved predictive accuracy of these models stems from their ability to identify subtle patterns and interactions
among multiple risk factors that may elude traditional statistical methods. Despite these technological advances,
significant gaps persist in the existing literature. A critical limitation of many previous studies is their narrow focus
on single disease endpoints or organ-specific outcomes. This reductionist approach fails to capture the systemic
nature of smoking-induced damage, which simultaneously affects cardiovascular, metabolic, hepatic, renal, and other
physiological systems. By concentrating on isolated conditions, prior research has provided an incomplete picture
of overall health decline in smokers, potentially missing important early warning signs that manifest across multiple
biomarker domains.

Furthermore, many earlier investigations relied on limited feature sets, often constrained to a handful of easily
measurable clinical variables. This restricted scope may overlook important predictive signals present in comprehensive
health screening data. Equally concerning is the prevalent use of "black-box" models without adequate attention to
interpretability[22]. The lack of explainability in these models has created substantial barriers to clinical adoption,
as healthcare providers understandably hesitate to base treatment decisions on opaque algorithmic recommendations
whose reasoning cannot be scrutinized or validated against clinical knowledge. Another notable deficiency in the
literature is the absence of rigorous benchmarking against established clinical risk assessment tools. Few studies have
directly compared machine learning predictions with validated instruments such as the Framingham Risk Score or other
standardized clinical algorithms[23]. This omission makes it difficult to evaluate whether the added complexity of
machine learning approaches yields meaningful improvements over simpler, well-established methods that clinicians
already trust and understand.

Our research addresses these critical gaps through several key innovations. First, we adopt a holistic, systems-based
perspective by incorporating a comprehensive panel of biomarkers spanning cardiovascular, hepatic, renal, metabolic,
and oral health domains. This multidimensional approach recognizes that smoking’s pathological effects manifest across
multiple organ systems simultaneously, and that early detection requires monitoring these interconnected pathways
rather than isolated endpoints.

Second, we prioritize model interpretability through the systematic application of SHAP (SHapley Additive exPla-
nations) values, transforming our ensemble machine learning models from opaque predictors into transparent[24],
clinically comprehensible tools. This interpretability framework enables healthcare providers to understand not only
*what* the model predicts but *why* it makes specific predictions for individual patients—a crucial requirement for
building clinical trust and facilitating shared decision-making.

Third, we provide rigorous comparative analysis by benchmarking our machine learning models against established
clinical risk scores. This head-to-head comparison offers concrete evidence regarding whether advanced algorithms
deliver meaningful advantages over conventional assessment tools, addressing a question of paramount importance for
clinical implementation and resource allocation decisions.

Finally, our work reframes the research question from simply identifying current smokers or predicting isolated disease
outcomes toward constructing a multidimensional risk assessment framework that supports personalized prevention
strategies and more efficient allocation of clinical resources. By detecting early signs of health decline before irreversible
damage occurs, our approach aims to shift clinical practice from reactive disease management toward proactive health
preservation. Through these contributions, we extend the scientific discourse beyond technical performance metrics
toward the development of clinically actionable, interpretable, and ethically responsible tools that can meaningfully
impact patient care and public health outcomes for smoking populations.
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3 Methods

3.1 Study Design and Participants

This study employed a retrospective cross-sectional design using data from a comprehensive health screening
program conducted in South Korea2. All measurements-including demographic information, anthropometric parameters,
biochemical analyses, and self-reported smoking status-were collected during a single health screening visit. Temporal
Design: The simultaneous collection of predictor and outcome variables means this study addresses a classification
problem (identifying current smokers) rather than a prognostic prediction problem (forecasting future disease). This
design choice reflects the practical clinical scenario where healthcare providers must assess smoking-related health
risks using only cross-sectional screening data available at the point of care. The screening program primarily enrolled
participants from urban and suburban populations, reflecting the demographic composition typical of organized health
surveillance initiatives in the region. While individual ethnic identifiers were not systematically recorded, the cohort is
presumed to be predominantly Korean, consistent with the national demographic profile of the screening program’s
catchment area. Participants underwent standardized health assessments that included the collection of demographic
information, anthropometric measurements, and biochemical analyses. Primary Outcome Variable: Smoking status,
categorized as current smoker or non-smoker based on self-report at the time of screening, served as the primary
outcome for our classification models. Individuals who reported currently smoking any tobacco products were classified
as smokers (coded as 1), while those reporting no current tobacco use were classified as non-smokers (coded as 0).
Important Note: We did not have access to smoking history variables (pack-years, duration, cessation attempts) or
longitudinal health outcomes (subsequent disease diagnoses, mortality). Therefore, our models identify cross-sectional
associations between biomarkers and current smoking status rather than predicting future smoking-related disease
incidence. Socioeconomic variation within the cohort was indirectly represented through lifestyle indicators such
as smoking prevalence and obesity rates, though direct measures of income, education level, or occupational status
were not available. This represents an important limitation, as socioeconomic factors are known to influence both
smoking behavior and health outcomes. The retrospective nature of the dataset and its sampling methodology may
result in underrepresentation of certain populations, particularly individuals from rural areas or highly marginalized
communities. These potential sampling biases and their implications for model generalizability are addressed in detail
in the Discussion section.

3.2 Dataset Characteristics

Table 1 analytical dataset comprised 55,691 individual health screening records, each containing a comprehensive
array of demographic, anthropometric, clinical, and lifestyle-related variables. The dataset structure was designed
to capture multiple dimensions of health status relevant to smoking-related physiological changes. Demographic
variables included age (years) and biological sex, providing essential contextual information for risk stratification.
Anthropometric measurements encompassed height (cm), weight (kg), and waist circumference (cm)-key indicators
of body composition and metabolic health status that are known to interact with smoking in determining cardiovascular
and metabolic risk.

Clinical biomarkers spanned multiple physiological systems[25, 26]:

• Cardiovascular markers: systolic blood pressure (SBP) and diastolic blood pressure (DBP), measured in
mmHg

• Metabolic markers: fasting blood glucose (mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL), high-
density lipoprotein cholesterol (HDL, mg/dL), and low-density lipoprotein cholesterol (LDL, mg/dL)

• Hepatic function indicators: aspartate aminotransferase (AST, IU/L), alanine aminotransferase (ALT, IU/L),
and gamma-glutamyl transferase (GGT, IU/L)

• Renal function markers: serum creatinine (mg/dL) and urinary protein levels

• Hematological parameters: hemoglobin concentration (g/dL)

The primary outcome variable was smoking status, coded as a binary indicator (smoker vs. non-smoker). This
classification was based on self-reported current smoking behavior at the time of health screening. Prior to statistical
analysis and model development, we implemented rigorous data quality control procedures to ensure the integrity and
reliability of the dataset. This multi-step process included outlier identification, biological plausibility assessment,

2Dataset source: “Smoking and Drinking Dataset with Body Signal.” Kaggle. Available at: https://www.kaggle.com/
datasets/sooyoungher/smoking-drinking-dataset
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Table 1: Summary Statistics of Health Metrics for Study Participants

Variable Unique Mean Std Percentile Distribution
Min 25% 50% 75% Max

Demographic and Anthropometric Metrics
ID 55692 27845.5 16077.04 0 13922.75 27845.5 41768.25 55691
Age (years) 14 44.18 12.07 20 40 40 55 85
Height (cm) 13 164.65 9.19 130 160 165 170 190
Weight (kg) 22 65.86 12.82 30 55 65 75 135
Waist (cm) 566 82.05 9.27 51 76 82 88 129

Sensory Health Indicators
Eyesight (left) 19 1.01 0.49 0.1 0.8 1 1.2 9.9
Eyesight (right) 17 1.01 0.49 0.1 0.8 1 1.2 9.9
Hearing (left) 2 1.03 0.16 1 1 1 1 2
Hearing (right) 2 1.03 0.16 1 1 1 1 2

Cardiovascular and Metabolic Indicators
Systolic BP (mmHg) 130 121.49 13.68 71 112 120 130 240
Diastolic BP (mmHg) 95 76.00 9.68 40 70 76 82 146
Fasting Blood Sugar (mg/dL) 276 99.31 20.80 46 89 96 104 505
Cholesterol (mg/dL) 286 196.9 36.3 55 172 195 220 445
Triglyceride (mg/dL) 390 126.67 71.64 8 74 108 160 999
HDL (mg/dL) 126 57.29 14.74 4 47 55 66 618
LDL (mg/dL) 289 114.96 40.93 1 92 113 136 1860

Hematologic, Renal, and Hepatic Indicators
Hemoglobin (g/dL) 145 14.62 1.56 4.9 13.6 14.8 15.8 21.1
Urine Protein 6 1.09 0.40 1 1 1 1 6
Serum Creatinine (mg/dL) 38 0.89 0.22 0.1 0.8 0.9 1 11.6
AST (U/L) 219 26.18 19.36 6 19 23 28 1311
ALT (U/L) 245 27.04 30.95 1 15 21 31 2914
GTP (U/L) 488 39.95 50.29 1 17 25 43 999

Oral Health and Behavioral Indicator
Dental Caries 2 0.21 0.41 0 0 0 0 1
Smoking (binary) 2 0.37 0.48 0 0 0 1 1

BP: Blood Pressure; HDL: High-Density Lipoprotein; LDL: Low-Density Lipoprotein; AST: Aspartate Aminotransferase; ALT:
Alanine Aminotransferase; GTP: Gamma-Glutamyl Transferase.

and unit consistency verification. Laboratory values were systematically screened for biological implausibility using
established reference ranges from clinical literature. Results exceeding known physiological limits-such as LDL
cholesterol values above 1,000 mg/dL or HDL cholesterol above 300 mg/dL-were flagged for detailed review. Each
flagged value was manually examined in the context of the individual’s complete clinical profile. Values consistent with
documented rare pathological conditions (e.g., severe familial hypercholesterolemia) were retained in the dataset, while
those appearing to represent data entry errors or instrument malfunction were excluded from analysis. All variables in
Table 1 were measured at a single time point during health screening visits. This cross-sectional data structure means
that predictor-outcome relationships reflect associations between current biomarker levels and concurrent smoking
status, not temporal precedence. While elevated liver enzymes or blood pressure in smokers may result from chronic
smoking exposure, the cross-sectional design precludes definitive causal inference. The dataset contained no follow-up
measurements or longitudinal health outcomes (e.g., subsequent cardiovascular events, cancer diagnoses, or mortality),
limiting our analysis to classification of current smoking status rather than prognostic risk modeling.

This approach balanced the need to preserve genuine extreme values while removing spurious data that could adversely
affect model training. Missing values were addressed using imputation strategies selected based on the distribution
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characteristics and missingness patterns of each variable. For continuous variables exhibiting approximately normal
distributions, mean imputation was employed. For skewed continuous variables, median imputation was utilized to avoid
distortion from extreme values. Categorical variables with missing entries were imputed using the mode (most frequent
category). The proportion of missing data for each variable was documented, and sensitivity analyses were planned to
assess the potential impact of imputation strategies on model performance. Continuous variables were standardized
(z-score transformation) to ensure comparable scales across features with different units of measurement[27]. This
preprocessing step is particularly important for distance-based algorithms and helps prevent features with larger
numerical ranges from dominating the learning process. It is important to acknowledge significant gaps in the
contextual information available within this dataset. Specifically, the data lacked comprehensive details regarding
participants’ geographic origins beyond the broad urban/suburban classification, detailed ethnic or racial backgrounds,
and socioeconomic indicators such as income, educational attainment, or occupational categories. This absence of
contextual variables limits our ability to evaluate potential sampling biases systematically or to assess whether model
performance varies across different demographic or socioeconomic strata.

3.3 Data Preprocessing

Prior to model development, we implemented a systematic data preprocessing pipeline to ensure data quality, consistency,
and compatibility with machine learning algorithms. This multi-stage process addressed missing values, encoded
categorical variables, and standardized numerical features to optimize model performance and reliability.

3.3.1 Missing Value Imputation

As is typical in real-world healthcare datasets, our data contained missing values across several variables that required
careful handling. We adopted variable-specific imputation strategies based on the nature and distribution characteristics
of each feature. For continuous numerical variables—including blood pressure measurements, lipid profiles, liver
enzyme concentrations, and renal function markers—we employed median imputation. This approach replaces missing
values with the median of the observed values for each respective feature. Median imputation was selected over mean
imputation due to its robustness to outliers and extreme values, which are not uncommon in clinical laboratory data.
This strategy preserves the central tendency of each feature’s distribution while minimizing distortion from atypical
observations. For categorical variables, including biological sex, dental health status, and urinary protein categories, we
utilized mode imputation, replacing missing entries with the most frequently occurring category for each variable. This
method maintains the dominant patterns in categorical distributions while providing complete data for model training.

3.3.2 Categorical Variable Encoding

Machine learning algorithms require numerical input representations. Therefore, we transformed all categorical variables
into numerical formats through appropriate encoding schemes. For binary categorical variables—such as smoking status
(smoker vs. non-smoker), biological sex (male vs. female), and dental caries presence (present vs. absent)—we applied
label encoding, converting categories into binary values of 0 and 1. This straightforward transformation preserves
the dichotomous nature of these variables while rendering them computationally tractable for algorithmic processing.
For ordinal categorical variables with inherent ordering (such as urinary protein levels), we maintained their ordinal
relationships through ordered numerical encoding. This approach ensures that the encoded values reflect the natural
progression or severity represented in the original categories.

3.3.3 Feature Standardization

A critical preprocessing step involved the standardization of all continuous numerical features using the StandardScaler
transformation[28]. Clinical biomarkers naturally exist on vastly disparate measurement scales: systolic blood pressure
values typically range from 70 to 240 mmHg, while hemoglobin concentrations span approximately 4 to 21 g/dL, and
serum creatinine measurements range from 0.1 to 11.6 mg/dL. Without standardization, algorithms might inappropriately
weight features with larger numerical ranges as more influential, regardless of their actual predictive importance. The
StandardScaler transformation normalizes each feature to have a mean of zero and a standard deviation of one through
the following formula:

z =
x− µ

σ
(1)

where x represents the original feature value, µ is the feature mean, σ is the feature standard deviation, and z is
the standardized value[29]. This transformation ensures that all features contribute comparably to model training,
preventing scale-dependent bias. Standardization is particularly crucial for distance-based algorithms (such as support
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Figure 1: Disentangling the Interdependent Relationships Among Health Indicators.

vector machines) and regularized models (such as logistic regression with L1 or L2 penalties), which are inherently
sensitive to feature magnitudes.

3.3.4 Data Quality Verification

Following each preprocessing step, we conducted comprehensive quality verification procedures. We examined feature
distributions before and after transformation to confirm that preprocessing maintained the underlying data structure and
relationships. Distribution plots, summary statistics, and correlation matrices were reviewed to identify any unintended
artifacts introduced by the preprocessing pipeline. Additionally, we verified that the standardization process did not
eliminate important distributional characteristics or create artificial patterns. The preservation of relative relationships
between observations across all features was confirmed through dimensionality reduction visualization techniques
applied to both raw and preprocessed data.

3.4 Feature Selection

To ensure our predictive models focused on the most clinically relevant biomarkers while avoiding redundant or
uninformative features, we implemented a systematic two-stage feature selection process.

First, we applied the Boruta algorithm (Algorithm 1) [30], an advanced wrapper method built around Random Forest
classification[31, 32]. This approach works by systematically comparing the importance of original features against
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randomized shadow features—shuffled copies that serve as benchmarks for statistical noise. The algorithm retains only
those features that demonstrate significantly stronger predictive power than these random counterparts. Through multiple
iterations, Boruta progressively eliminates weak predictors while preserving features that consistently contribute to
accurate smoking status classification. We complemented this automated selection with detailed correlation analysis to
identify and address potential multicollinearity issues[33]. Clinical measurements often move together—for example,
AST and ALT levels both reflect liver function and tend to change in tandem. We examined pairwise correlations
between all features and applied clinical domain knowledge to decide whether to retain both correlated biomarkers
or select the most clinically informative one. This step proved particularly valuable for metabolic markers such as
triglycerides and HDL cholesterol, as well as anthropometric measurements like weight and waist circumference, where
natural biological relationships could create redundant information that might distort model interpretations. The final
feature set represented a careful balance between statistical performance and clinical practicality. We prioritized features
that not only ranked high in machine learning importance metrics but also aligned with established medical knowledge
about disease biomarkers. For instance, while certain laboratory values showed moderate predictive power in isolation,
we gave preference to combinations of markers that clinicians actually use in routine diagnostic workflows (Figure 1).
This dual emphasis on algorithmic performance and real-world clinical relevance resulted in a curated set of predictors
that were both statistically powerful and medically interpretable—essential qualities for any healthcare application
where model decisions need to be explainable to medical professionals.

Algorithm 1 Boruta Feature Selection Algorithm

Require: Dataset D with features F = {f1, f2, . . . , fn}, target variable Y
Ensure: Subset of relevant features Fselected

1: Initialize all features in F as tentative
2: while stopping criterion not met do
3: Create shadow features S by permuting values of each fi ∈ F
4: Train a Random Forest classifier on (F ∪ S) to compute feature importance scores
5: Let Ishadowmax be the maximum importance score among shadow features
6: for each feature fi ∈ F do
7: if I(fi) > Ishadowmax with statistical significance then
8: Mark fi as Confirmed Important
9: else if I(fi) < Ishadowmax with statistical significance then

10: Mark fi as Rejected
11: else
12: Keep fi as Tentative
13: end if
14: end for
15: Remove rejected features and regenerate shadows for next iteration
16: end while
17: return Fselected = set of all Confirmed Important features

3.5 Class Imbalance

Analysis of our dataset revealed a moderate class imbalance with smokers comprising 36.7% (n = 20,438) and
non-smokers 63.3% (n = 35,253) of the cohort, yielding an imbalance ratio of 1.72:1. While not severe, this imbalance
required careful handling to prevent models from developing bias toward the majority (non-smoker) class, which could
result in high overall accuracy while failing to identify at-risk smokers-the population of primary clinical interest.
Class imbalance presented a significant challenge in our machine learning pipeline. Our initial analysis revealed a
substantial disparity between smokers and non-smokers in the dataset, with non-smokers considerably outnumbering
smokers. This imbalance posed a real risk to model performance because standard machine learning algorithms tend to
favor the majority class, potentially achieving high overall accuracy while failing to properly identify smokers—the
minority class that represents our primary interest for health risk prediction. To ensure our models could effectively
learn from all available data without developing this problematic bias, we implemented several strategic approaches:
Random Resampling Techniques: For our baseline models (Logistic Regression and Support Vector Machines),
we employed fundamental resampling methods[34]. Random oversampling of the minority class created additional
copies of existing smoking cases to balance the class distribution. Conversely, random undersampling of the majority
class achieved balance by reducing the number of non-smoking cases. While these methods improved our models’
ability to detect smokers, we carefully monitored for potential overfitting from oversampling and information loss from
undersampling. Class Weight Adjustment: For our ensemble tree-based methods (Random Forest, XGBoost, and
LightGBM), we leveraged their built-in capability to handle imbalance through class weighting[35]. By assigning higher
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misclassification penalties to the minority smoking class, these algorithms naturally prioritized correct identification
of smokers during training. Specifically, in Random Forest we adjusted class weights inversely proportional to class
frequencies, while for XGBoost and LightGBM we utilized the scale_pos_weight parameter to account for the
imbalance ratio. Performance Metric Selection: Recognizing that standard accuracy would be misleading with
imbalanced data, we prioritized evaluation metrics that properly assess minority class identification: F1-score (the
harmonic mean of precision and recall), AUC-ROC (area under the receiver operating characteristic curve), and the G-
mean (geometric mean of sensitivity and specificity). Stratified Sampling: Throughout our cross-validation procedures,
we maintained the original class distribution in each fold through stratified sampling[36]. This prevented accidental
introduction of bias during model evaluation and ensured reliable performance estimates across all experimental runs.

3.5.1 Validation of Class Imbalance Mitigation Strategies

To verify that our class imbalance handling techniques were effective rather than merely theoretical, we conducted
comparative analyses evaluating model performance before and after applying mitigation strategies. Impact of
Class Weighting: Table 3 demonstrates the effect of class weight adjustments on ensemble tree models. Without
class weighting, models exhibited high overall accuracy (>85%) but poor minority class detection (sensitivity 64%),
indicating bias toward predicting the majority non-smoker class. After applying inverse frequency weighting, sensitivity
improved substantially to 80.1% for Random Forest, while specificity declined only modestly from 89% to 86.5%.
This trade-off represents desirable behavior for a health screening tool, where failing to identify at-risk smokers (false
negatives) carries greater clinical cost than false alarms (false positives). Evaluation with Imbalance-Specific Metrics:
The G-mean metric (geometric mean of sensitivity and specificity), specifically designed to assess balanced performance
on imbalanced datasets, increased from 0.75 (unweighted) to 0.83 (weighted) for Random Forest, confirming genuine
improvement in balanced classification rather than mere accuracy inflation through majority class prediction. Similarly,
the F1-score, which penalizes models that achieve high precision at the expense of recall, improved from 0.71 to
0.79, validating that our models genuinely learned to identify smokers. Comparison of Resampling Techniques: We
compared class weighting (our chosen approach) against alternative resampling methods including random oversampling,
random undersampling, SMOTE (Synthetic Minority Over-sampling Technique) [37], and ADASYN (Adaptive
Synthetic Sampling)[38]. For ensemble tree methods, class weighting achieved equivalent or superior performance
(AUC-ROC within 0.01) compared to resampling approaches, while offering computational advantages by avoiding data
duplication or reduction. For traditional models (Logistic Regression, SVM), we employed random oversampling as
these algorithms lack native class weighting mechanisms. Cross-Validation Stratification: Throughout all experiments,
we maintained stratified sampling in cross-validation folds, ensuring each fold preserved the original 36.7%/63.3%
smoker/non-smoker distribution. This prevented scenarios where random splits might accidentally create folds with
extreme class imbalances (e.g., 20% smokers in one fold, 50% in another), which would distort performance estimates.
These validation steps confirm that our final models exhibit genuine predictive capability for the minority smoker class
rather than achieving high accuracy through majority class prediction-a common pitfall in imbalanced classification
tasks.

Table 3: Impact of class imbalance mitigation on Random Forest performance. Class weighting substantially improved
minority class detection (sensitivity) with minimal accuracy loss, validating effective imbalance handling.

Configuration Accuracy Sensitivity Specificity F1-Score G-mean
No class weighting 0.867 0.643 0.892 0.708 0.752
With class weighting 0.842 0.801 0.865 0.788 0.833
Change -0.025 +0.158 -0.027 +0.080 +0.081

3.6 Predictive Models

We employed five distinct machine learning algorithms to predict smoking-related health decline, carefully selected
to represent different modeling approaches for medical prediction tasks. We implemented Logistic Regression as
our baseline traditional statistical model, providing interpretable linear relationships between risk factors and health
outcomes. For capturing non-linear patterns, we included Support Vector Machines with a radial basis function (RBF)
kernel, which can identify complex decision boundaries in high-dimensional feature spaces. The ensemble methods
comprised three advanced tree-based algorithms: Random Forest, valued for its robust handling of feature interactions
and resistance to overfitting through aggregation of multiple decision trees; XGBoost, which implements a regularized
gradient boosting framework that builds trees sequentially to correct errors from previous iterations; and LightGBM,
known for its efficient histogram-based implementation that enables faster training on large datasets while maintaining
high accuracy.
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Figure 2: Visualization of the effects of age and BMI (left) and systolic blood pressure (SBP) and BMI (right) on health
risk predictions, highlighting the non-linear relationships between these factors and their impact on smoking-related
health decline.

This selection spanned from simple, interpretable models to complex ensemble techniques, allowing us to evaluate
how different algorithmic approaches capture the multifaceted nature of smoking-related health risks across demo-
graphic, anthropometric, and biochemical markers. All models underwent identical preprocessing and feature selection
procedures to ensure fair comparison of their inherent predictive capabilities.

3.7 Model Interpretation

Understanding how individual risk factors influence model predictions is essential for clinical application. Our analysis
of age and BMI effects on health risk predictions revealed several clinically significant patterns. Age demonstrated a
strong positive correlation with predicted risk, with particularly notable acceleration in risk scores beginning around
age 50. This mirrors the well-established epidemiological pattern of smoking-related diseases manifesting more
frequently in middle age. The relationship was not purely linear (Figure 2), showing slight plateaus at certain life
stages that may reflect periods of biological resilience or stability. For BMI, we observed a more complex U-shaped
relationship. Both underweight individuals (BMI < 18.5) and obese individuals (BMI > 30) corresponded to elevated
risk predictions, while the normal to slightly overweight range (BMI 20-27) appeared most protective. This pattern
aligns with the "obesity paradox[39]" observed in some chronic diseases, where moderate body weight may confer
metabolic advantages against smoking-induced damage[40]. The interaction between age and BMI proved particularly
revealing. Elderly smokers with low BMI showed dramatically higher risk scores than either factor alone would
predict, suggesting this combination may serve as a critical warning sign for clinicians. These findings underscore the
importance of considering both chronological age and body composition when assessing smoking-related health risks,
as their combined effect reveals vulnerabilities that single-factor analysis might miss. The non-linear patterns visible
in these relationships argue strongly for personalized risk assessment approaches rather than simple threshold-based
screening protocols. Machine learning models naturally capture these complex interactions, providing more nuanced
risk stratification than traditional linear methods.

3.8 Evaluation Parameters

To ensure comprehensive and clinically meaningful model evaluation, we employed multiple performance metrics
appropriate for imbalanced classification tasks. Model performance was assessed using 10-fold stratified cross-
validation, with all metrics reported as mean ± standard deviation along with 95% confidence intervals calculated using
the t-distribution. Primary Metrics:
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• AUC-ROC (Area Under the Receiver Operating Characteristic Curve): Measures the model’s ability to
discriminate between classes across all classification thresholds

• AUC-PR (Area Under the Precision-Recall Curve): Particularly informative for imbalanced datasets,
emphasizing performance on the minority class

• Sensitivity (Recall): Proportion of actual smokers correctly identified (true positive rate)
• Specificity: Proportion of actual non-smokers correctly identified (true negative rate)
• Precision (Positive Predictive Value): Proportion of predicted smokers who are actual smokers
• F1-Score: Harmonic mean of precision and recall, balancing both metrics
• G-mean: Geometric mean of sensitivity and specificity, providing balanced assessment for imbalanced data
• Accuracy: Overall proportion of correct classifications

Statistical significance of performance differences between models was evaluated using paired t-tests on AUC-ROC
scores from cross-validation folds, with p-values < 0.05 considered statistically significant. Table 4 presents the
comprehensive performance evaluation across all models. The Random Forest model achieved outstanding performance
with an AUC-ROC of 0.926± 0.004 (95% CI: 0.923–0.930) and AUC-PR of 0.880± 0.007 (95% CI: 0.874–0.885),
significantly outperforming all other algorithms. The model demonstrated well-balanced performance across all
metrics: 84.2% accuracy, 86.5% specificity, and 80.1% sensitivity, indicating reliable identification of both high-
risk and low-risk individuals with minimal bias toward either class. The gradient boosting models (XGBoost and
LightGBM) demonstrated strong and consistent performance, with XGBoost achieving an AUC-ROC of 0.867 ±
0.003 and LightGBM 0.859 ± 0.003. XGBoost exhibited notably high sensitivity (72.6%), suggesting particular
effectiveness in identifying true positive cases—a valuable characteristic for preventive health screening where missing
at-risk individuals poses greater clinical concern than overdiagnosis. Traditional machine learning approaches (SVM
and Logistic Regression) achieved respectable but lower performance, with AUC-ROC scores of 0.839 and 0.830,
respectively. While these models maintained acceptable discriminative ability, their lower F1-scores (0.696 and 0.667)
and G-mean values (0.758 and 0.734) revealed challenges in optimally balancing precision and recall, particularly
in handling the class imbalance. The narrow standard deviations across all metrics (all < 0.01 for AUC-ROC) and
tight confidence intervals demonstrate high stability and reproducibility of these results across different data subsets,
providing confidence in the models’ reliability for clinical application.

Table 4: Performance metrics of various predictive models with 95% confidence intervals. Values are presented as
Mean ± Standard Deviation [95% CI Lower, 95% CI Upper]. All metrics were calculated using 10-fold stratified
cross-validation.

Model AUC-ROC AUC-PR Accuracy Specificity Sensitivity Precision F1 G-mean

XGBoost 0.867±0.003
[0.865, 0.870]

0.760±0.006
[0.756, 0.764]

0.786±0.004
[0.783, 0.789]

0.821±0.004
[0.818, 0.823]

0.726±0.010
[0.719, 0.734]

0.701±0.005
[0.697, 0.705]

0.714±0.007
[0.709, 0.719]

0.772±0.005
[0.768, 0.776]

LightGBM 0.859±0.003
[0.856, 0.861]

0.748±0.007
[0.742, 0.753]

0.774±0.003
[0.772, 0.776]

0.802±0.005
[0.799, 0.806]

0.725±0.006
[0.721, 0.730]

0.681±0.005
[0.677, 0.684]

0.702±0.004
[0.699, 0.705]

0.763±0.003
[0.760, 0.765]

Random Forest 0.926±0.004
[0.923, 0.930]

0.880±0.007
[0.874, 0.885]

0.842±0.007
[0.837, 0.847]

0.865±0.007
[0.860, 0.870]

0.801±0.010
[0.794, 0.809]

0.775±0.010
[0.768, 0.783]

0.788±0.009
[0.782, 0.795]

0.833±0.007
[0.827, 0.838]

SVM 0.839±0.005
[0.835, 0.842]

0.719±0.008
[0.713, 0.725]

0.765±0.004
[0.762, 0.768]

0.785±0.006
[0.780, 0.789]

0.732±0.006
[0.727, 0.736]

0.664±0.006
[0.659, 0.669]

0.696±0.005
[0.692, 0.700]

0.758±0.004
[0.755, 0.761]

Logistic Regression 0.830±0.004
[0.827, 0.833]

0.689±0.007
[0.684, 0.695]

0.745±0.005
[0.742, 0.749]

0.774±0.007
[0.768, 0.779]

0.696±0.007
[0.691, 0.702]

0.641±0.007
[0.636, 0.646]

0.667±0.006
[0.663, 0.672]

0.734±0.005
[0.730, 0.737]

3.8.1 Statistical Comparison of Model Performance

To rigorously assess whether performance differences between models were statistically significant rather than due to
random variation, we conducted pairwise paired t-tests comparing AUC-ROC scores across all algorithms (Table 5).
Each fold in the 10-fold cross-validation was treated as a paired observation, enabling direct statistical comparison.
Random Forest demonstrated statistically significant superiority over all other models (p < 0.001 for all pairwise
comparisons). The performance advantage was most pronounced compared to traditional approaches: Random
Forest exceeded Logistic Regression by 0.096 AUC-ROC points (t = 76.06, p < 0.001) and SVM by 0.088 points
(t = 82.97, p < 0.001). Even compared to other ensemble methods, Random Forest maintained significant advantages
over XGBoost (difference = 0.059, t = 69.20, p < 0.001) and LightGBM (difference = 0.068, t = 71.01, p <
0.001). Among ensemble methods, XGBoost significantly outperformed LightGBM (difference = 0.009, t = 13.89,
p < 0.001), though the margin was smaller than comparisons with traditional models. Both gradient boosting
approaches (XGBoost and LightGBM) demonstrated highly significant advantages over Logistic Regression and SVM
(all p < 0.001), confirming that ensemble methods provide measurable and clinically meaningful improvements in
predictive accuracy for smoking-related health risk assessment.
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Table 5: Pairwise statistical comparisons of model performance using paired t-tests on AUC-ROC scores. All
comparisons were conducted using 10-fold cross-validation scores as paired observations. All p-values are < 0.001,
indicating highly significant differences.

Model 1 Model 2 Mean Difference t-statistic p-value Significant
XGBoost LightGBM 0.0087 13.89 <0.001 Yes
XGBoost Random Forest −0.0590 −69.20 <0.001 Yes
XGBoost SVM 0.0284 34.58 <0.001 Yes
XGBoost Logistic Regression 0.0372 52.28 <0.001 Yes
LightGBM Random Forest −0.0677 −71.01 <0.001 Yes
LightGBM SVM 0.0198 26.99 <0.001 Yes
LightGBM Logistic Regression 0.0285 35.76 <0.001 Yes
Random Forest SVM 0.0875 82.97 <0.001 Yes
Random Forest Logistic Regression 0.0962 76.06 <0.001 Yes
SVM Logistic Regression 0.0087 9.26 <0.001 Yes

3.8.2 Performance on Imbalanced Data: AUC-PR Analysis

Given the class imbalance in our dataset (36.7% smokers vs. 63.3% non-smokers, imbalance ratio 1.72:1), we
evaluated models using AUC-PR (Precision-Recall), which provides a more informative assessment than AUC-ROC for
imbalanced classification tasks. While AUC-ROC can appear optimistic when one class dominates, AUC-PR directly
reflects performance on the minority class of interest-smokers at health risk. Random Forest achieved the highest AUC-
PR of 0.880± 0.007 (95% CI: 0.874–0.885), substantially outperforming all other models. This 12.0 percentage-point
advantage over XGBoost (0.760) and 19.1-point advantage over Logistic Regression (0.689) demonstrates Random
Forest’s superior ability to maintain high precision while identifying the majority of at-risk smokers. The consistent
superiority of Random Forest across both AUC-ROC and AUC-PR metrics confirms its robustness and reliability
for smoking-related health risk prediction, even under challenging class distribution conditions. XGBoost (AUC-PR
= 0.760) and LightGBM (AUC-PR = 0.748) maintained respectable performance, while traditional models showed
greater degradation: SVM (0.719) and particularly, Logistic Regression (0.689) struggled more noticeably with the
imbalanced data structure. This pattern reinforces that ensemble methods’ sophisticated handling of complex decision
boundaries and feature interactions translates to more reliable minority class identification—a critical capability for
preventive health screening applications where the at-risk population is typically the smaller group requiring detection.

3.9 Statistical Analysis

The ROC curve in Figure 3 analysis provides a compelling visualization of our models’ predictive capabilities, with each
algorithm’s performance represented by its ability to balance true positive identifications against false alarms. The curves
reveal a clear trend: the Random Forest model exhibits superior performance (AUC = 0.906), arching noticeably closer
to the ideal top-left corner of the graph and demonstrating strong discriminative power in identifying smokers at risk of
health decline. XGBoost and LightGBM form a close second tier (AUCs = 0.862 and 0.855, respectively), showing
robust yet slightly less discriminative capabilities. The more traditional Support Vector Machine (SVM) and Logistic
Regression models, while still performing respectably (AUCs = 0.808–0.825), visibly trail behind in this graphical
representation—their flatter curves indicating more difficulty in cleanly separating high-risk from low-risk individuals.
To ensure these findings were not artifacts of random data splits, we implemented a rigorous 10-fold stratified
cross-validation procedure that has been shown in Algorithm 2. This gold-standard validation approach ensured that
performance metrics reflected true generalizable ability rather than coincidental alignment with particular data subsets.
The stratification preserved original class proportions in each fold—critical for our imbalanced dataset—while the ten
iterations provided a sufficient basis for robust statistical comparison. We further conducted paired t-tests to evaluate
statistical significance between models[41]. The results revealed significant differences (p < 0.05), confirming, for
example, that the Random Forest’s advantage over Logistic Regression was not due to random variation but represented
a genuine improvement in predictive performance. These statistical safeguards elevate our analysis from algorithmic
experimentation to clinically trustworthy evidence, offering healthcare professionals confidence that such models could
meaningfully enhance early detection of smoking-related health risks. The combination of visual ROC analysis and
rigorous inferential testing thus provides both intuitive understanding and mathematical certainty regarding which
predictive models offer the most reliable performance for this pressing public health challenge.
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3.10 Software and Computational Environment

All analyses were conducted using Python 3.11.0 in a Jupyter Notebook environment (JupyterLab 4.0.0). Machine
learning model implementations utilized the following libraries and versions:

• scikit-learn 1.3.0[42]: Implementation of Random Forest (RandomForestClassifier), Logistic Regression (Lo-
gisticRegression), Support Vector Machine (SVC), data preprocessing utilities (StandardScaler, LabelEncoder),
cross-validation frameworks (StratifiedKFold), and evaluation metrics.

• XGBoost 2.0.0 [43]: Extreme Gradient Boosting implementation (XGBClassifier) with native handling of
class imbalance via scale_pos_weight parameter.

• LightGBM 4.1.0 [44]: Light Gradient Boosting Machine implementation (LGBMClassifier) with histogram-
based optimization for efficient large-scale training.

• SHAP 0.43.0[45]: SHapley Additive exPlanations for model interpretability, using TreeExplainer for tree-
based models.

• pandas 2.1.0[46]: Data manipulation and preprocessing.
• NumPy 1.25.0[47]: Numerical computations and array operations.
• SciPy 1.11.0[48]: Statistical tests including paired t-tests and Little’s MCAR test.
• matplotlib 3.7.0[49] and seaborn 0.12.0[50]: Data visualization and figure generation.

Algorithm 2 10-Fold Stratified Cross-Validation Algorithm

Require: Dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, number of folds k = 10
Ensure: Mean performance metrics across k folds

1: Randomly shuffle dataset D while preserving class proportions (stratification)
2: Split D into k approximately equal subsets {D1, D2, . . . , Dk}
3: for i = 1 to k do
4: Dtest ← Di

5: Dtrain ← D \Di

6: Train model Mi on Dtrain

7: Evaluate Mi on Dtest to compute metrics: Accuracy, Precision, Recall, F1-score, AUC, Specificity, Sensitivity
8: Store all performance results from fold i
9: end for

10: Compute mean and standard deviation of each metric across all k folds
11: return Average Metrics = 1

k

∑k
i=1 Metrici

4 Results

4.1 Experimental Setup

The experimental setup was designed to rigorously evaluate the predictive performance of machine learning models on
smoking-related health decline. The dataset, Smoking.csv, was partitioned into training (80%) and testing (20%) sets
using stratified sampling to preserve the distribution of outcomes across both subsets[51]. This approach mitigates
potential biases and ensures robust model evaluation. Seven distinct machine learning algorithms were implemented,
encompassing both traditional and advanced ensemble methods. Traditional models included Logistic Regression
(LR), Support Vector Machine (SVM), and Random Forest (RF), selected for their interpretability and baseline
performance. Ensemble techniques such as XGBoost and LightGBM were also employed to leverage their superior
handling of complex, non-linear relationships in the data. Hyperparameter optimization was conducted using 10-fold
cross-validation (Algorithm 2), a method chosen for its balance between computational efficiency and reliability in
estimating model performance. To address potential class imbalance—a common challenge in health datasets—the
NRSBoundary-SMOTE Algorithm 3 was applied, which selectively oversamples minority class instances near decision
boundaries. This method enhances model sensitivity without distorting the underlying data distribution.

4.2 Baseline Characteristics

The study population comprised a diverse cohort with balanced representation across key demographic and clinical
variables. Gender distribution was evenly split, with no missing data for any variables—indicating excellent data
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Figure 3: The ROC curve analysis compares the predictive performances of various machine learning models for
smoking-related health decline, with higher AUC values indicating better accuracy in risk differentiation.

Algorithm 3 NRSBoundary-SMOTE Algorithm

Require: Minority class samples Smin, majority class samples Smaj , number of nearest neighbors k, desired oversam-
pling rate r

Ensure: Synthetic minority samples Ssyn

1: Compute Neighborhood Rough Set (NRS) boundaries for Smin:
Determine boundary regions where minority samples are near majority class samples

2: for each xi ∈ Smin do
3: Identify k nearest neighbors Ni from Smin

4: Compute neighborhood radius ϵi based on local density
5: if xi lies within boundary region (close to Smaj) then
6: Select neighbor xj ∈ Ni

7: Generate synthetic sample:

xnew = xi + λ× (xj − xi), λ ∼ U(0, 1)

8: Add xnew to Ssyn

9: end if
10: end for
11: Repeat steps until |Ssyn| = r × |Smin|
12: return Smin ∪ Ssyn as the new balanced minority class set
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Table 6: Summary of factors, categorical and continuous variable assignments, and missing data analysis. This table
outlines the encoding scheme used for categorical factors (e.g., gender, hearing, urine protein, smoking status) and
reports missing values for each feature. All variables show complete data coverage, ensuring robust analysis without
imputation bias. Continuous variables include demographic, anthropometric, biochemical, and physiological indicators
covering a wide clinical range, suitable for modeling smoking-related health decline.

Factor Assignment Missing (n) Missing rate (%)
gender Male = 1 (0.0%) 0 0
gender Female = 2 (0.0%) 0 0
hearing(left) Normal = 0 (0.0%) 0 0
hearing(left) Impaired = 1 (97.4%) 0 0
hearing(right) Normal = 0 (0.0%) 0 0
hearing(right) Impaired = 1 (97.4%) 0 0
Urine protein Negative = 0 (0.0%) 0 0
Urine protein Positive = 1 (94.4%) 0 0
oral No = 0 (0.0%) 0 0
oral Yes = 1 (0.0%) 0 0
dental caries No = 0 (78.7%) 0 0
dental caries Yes = 1 (21.3%) 0 0
tartar No = 0 (0.0%) 0 0
tartar Yes = 1 (0.0%) 0 0
smoking No = 0 (63.3%) 0 0
smoking Yes = 1 (36.7%) 0 0
age Continuous (20.0 to 85.0) 0 0
height(cm) Continuous (130.0 to 190.0) 0 0
weight(kg) Continuous (30.0 to 135.0) 0 0
waist(cm) Continuous (51.0 to 129.0) 0 0
eyesight(left) Continuous (0.1 to 9.9) 0 0
eyesight(right) Continuous (0.1 to 9.9) 0 0
systolic Continuous (71.0 to 240.0) 0 0
relaxation Continuous (40.0 to 146.0) 0 0
fasting blood sugar Continuous (46.0 to 505.0) 0 0
Cholesterol Continuous (55.0 to 445.0) 0 0
triglyceride Continuous (8.0 to 999.0) 0 0
HDL Continuous (4.0 to 618.0) 0 0
LDL Continuous (1.0 to 1860.0) 0 0
hemoglobin Continuous (4.9 to 21.1) 0 0
serum creatinine Continuous (0.1 to 11.6) 0 0
AST Continuous (6.0 to 1311.0) 0 0
ALT Continuous (1.0 to 2914.0) 0 0
Gtp Continuous (1.0 to 999.0) 0 0

completeness. Hearing impairment was nearly universal in both ears (97.4%), while urinary protein positivity was
observed in 94.4% of participants. Oral health markers showed dental caries in 21.3% of individuals, though tartar
presence was negligible. Smoking status revealed that 36.7% were current smokers, providing a substantial subgroup
for risk analysis. Physiological measurements spanned wide ranges, reflecting real-world variability: age ranged from
20 to 85 years, systolic blood pressure from 71 to 240 mmHg, and fasting blood sugar from 46 to 505 mg/dL. Notably,
lipid profiles showed extreme values (e.g., LDL up to 1860 mg/dL and HDL up to 618 mg/dL), suggesting potential
outliers or severe metabolic dysregulation in some participants. Liver enzymes (AST, ALT) and kidney function
markers (serum creatinine) also exhibited broad distributions, highlighting the cohort’s heterogeneity. These baseline
characteristics underscore the dataset’s richness for investigating smoking-related health decline across metabolic,
cardiovascular, and hepatic domains.

4.3 Univariate Analysis

The Figure 4’s correlation heatmap revealed several noteworthy relationships between health metrics and smoking-
related risk factors. Age showed a moderate negative correlation with weight (r = −0.32) and weaker associations
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with height (r = −0.15) and eyesight (r = −0.20), suggesting gradual physiological changes over time. Strong
positive correlations emerged between anthropometric measures—weight and waist circumference (r = 0.22), and
between waist and eyesight (r = 0.93–0.94)—though the latter may reflect data artifacts rather than genuine biological
relationships. Metabolic markers exhibited clinically meaningful patterns: triglyceride levels correlated positively
with weight (r = 0.32), waist circumference (r = 0.36), and systolic blood pressure (r = 0.20), consistent with
established obesity–cardiometabolic risk pathways. Conversely, HDL cholesterol demonstrated protective inverse
relationships with weight (r = −0.36), waist circumference (r = −0.38), and triglycerides (r = −0.41). Liver
enzymes (ALT, AST) and GGT showed mild but consistent positive correlations with metabolic markers (e.g.,
ALT–triglyceride: r = 0.18), suggesting possible interactions between smoking and hepatic function, potentially
influenced by alcohol intake. Interestingly, age exhibited negligible correlations with most biochemical markers,
implying that smoking-related physiological risks may overshadow typical age-related effects within this cohort.

Figure 4: This heatmap visually represents the correlation between different health metrics, such as blood pressure,
cholesterol, and organ function markers. Color intensities indicate the strength and direction of the relationships, with
red hues indicating positive correlations and blue hues indicating negative correlations.
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Table 7: Selected features and their corresponding clinical interpretations. This table summarizes the twelve health
metrics identified by the Boruta algorithm as significant predictors of smoking-related health decline, along with the
physiological or pathological conditions they represent across cardiovascular, metabolic, hepatic, renal, and hematologic
systems.

Feature Clinical Interpretation
Systolic BP Blood pressure (Hypertension)
Fasting Blood Sugar Diabetes indicator
Cholesterol Cardiovascular disease risk
Triglyceride Metabolic syndrome marker
HDL Protective cardiovascular factor
LDL Atherosclerosis risk
Hemoglobin Anemia / Polycythemia
Serum Creatinine Kidney function indicator
AST Liver disease marker
ALT Liver disease marker
GGT Liver / Biliary disease
Urine Protein Kidney disease indicator

4.4 Variable Selection by Boruta

The Boruta algorithm in Algorithm 1 and Boruta features in Table 7 identified twelve clinically significant predictors
of smoking-related health decline from the initial twenty-seven features, prioritizing variables with strong biological
plausibility. Key selected features included the following:

Cardiometabolic markers: Systolic blood pressure (hypertension risk), fasting blood sugar (diabetes indicator), and
triglycerides (metabolic syndrome) were retained due to their established associations with smoking-induced vascular
and metabolic dysfunction.

Lipid profile: Both HDL (protective cardiovascular factor) and LDL (atherosclerosis risk) were selected, reflecting
smoking’s dual impact on lipid metabolism and cardiovascular health. Organ dysfunction indicators: Liver enzymes
(AST, ALT, GGT) and kidney markers (serum creatinine, urine protein) were prioritized, aligning with smoking’s
well-documented hepatotoxic and nephrotoxic effects.

Hematologic measure: Hemoglobin was retained due to its relevance in smoking-related polycythemia and anemia,
conditions often associated with altered oxygen-carrying capacity in chronic smokers.

Notably, anthropometric variables (e.g., height, weight) and dental health factors (e.g., tartar) were rejected, suggesting
their predictive power was overshadowed by direct physiological biomarkers. The final feature set collectively spans
cardiovascular, metabolic, hepatic, and renal health domains—critical physiological systems affected by smoking.

4.5 Model Establishment and Evaluation

The study employed five distinct machine learning approaches to predict smoking-related health decline, each chosen
for its specific strengths in handling medical prediction tasks. The models ranged from traditional statistical methods
to advanced ensemble techniques, providing a comprehensive evaluation of predictive performance across different
algorithmic paradigms. All models were trained on the same curated feature set encompassing demographic, biometric,
and biochemical markers, with careful attention to hyperparameter tuning and cross-validation to ensure fair comparison.
The performance evaluation in Table 9 revealed Random Forest as the standout algorithm, achieving an impressive AUC
of 0.907. This superior performance likely stems from Random Forest’s inherent advantages in medical datasets—its
ensemble of decision trees effectively captures complex, non-linear relationships between health markers while
maintaining robustness against overfitting through feature subsampling and aggregation of multiple predictors. The
model’s ability to handle high-dimensional interactions among variables proved particularly valuable for identifying
multifaceted patterns of smoking-related health decline. Close behind, XGBoost demonstrated strong predictive
capability with an AUC of 0.862, benefiting from its regularized gradient boosting framework that sequentially corrects
errors from previous trees while controlling model complexity. The gradient boosting family showed consistent
performance, with LightGBM attaining an AUC of 0.854. While slightly trailing XGBoost, LightGBM’s histogram-
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Table 9: AUC scores for various machine learning models used in predicting smoking-related health decline. The table
summarizes each model’s discriminative ability, with Random Forest achieving the highest AUC, followed by XGBoost
and LightGBM, reflecting the superior performance of ensemble-based approaches compared to traditional models.

Model AUC
Random Forest 0.9069
XGBoost 0.8616
LightGBM 0.8542
SVM 0.8356
Logistic Regression 0.8280

based approach offered computational efficiency advantages that could prove valuable in real-world clinical deployment
scenarios. Both boosting algorithms outperformed the more conventional approaches, with the Support Vector
Machine (SVM) achieving an AUC of 0.836 and Logistic Regression scoring 0.828 as the baseline model. This
performance hierarchy underscores how ensemble methods particularly excel at extracting predictive signals from
complex biomedical data, where multiple interacting risk factors contribute to health outcomes in non-additive ways.
The strong performance across all models (AUCs > 0.82) validates the effectiveness of our feature selection and
preprocessing pipeline, demonstrating that smoking-related health risks leave detectable signatures across routine
clinical measurements. However, the approximately eight-percentage-point gap between the top-performing Random
Forest and the baseline Logistic Regression highlights the importance of algorithm selection in medical prediction tasks.
These findings suggest that while traditional statistical models can capture basic risk patterns, the complex, systemic
nature of smoking-induced health decline requires more sophisticated machine learning approaches to achieve clinically
meaningful predictive accuracy. The results provide empirical support for adopting ensemble-based methods in smoking
risk stratification systems, while acknowledging that simpler models may retain advantages in interpretability and
implementation feasibility within certain clinical contexts.

4.6 Comprehensive Feature Importance Analysis

To address the critical need for model interpretability in clinical applications, we conducted a comprehensive SHAP
(SHapley Additive exPlanations) analysis on our best-performing Random Forest model. SHAP values provide a unified
framework for interpreting model predictions by quantifying each feature’s contribution to individual risk assessments,
grounded in cooperative game theory[45, 52].

4.6.1 Top 15 Most Influential Health Indicators

SHAP analysis revealed 15 key health indicators that drive smoking-related health risk predictions, ranked by their
mean absolute SHAP value (Table 11). These features collectively account for 91.90% of the model’s total predictive
importance, confirming that a relatively compact set of biomarkers captures the vast majority of smoking-related health
signals. The features span multiple physiological systems, demonstrating that smoking induces systemic, multi-organ
damage rather than isolated pathology. Sex-Specific Effects Dominate Risk Prediction. Gender emerged as the single
strongest predictor (SHAP importance = 0.1312, rank 1), accounting for 13.1% of total model importance-more than
twice the contribution of any other single feature. This finding underscores profound sex-specific differences in smoking-
related health consequences. Male smokers demonstrated substantially higher predicted risk scores than female smokers,
consistent with epidemiological evidence showing men experience earlier onset and greater severity of smoking-induced
cardiovascular disease, COPD, and certain cancers[53]. The biological mechanisms underlying this disparity likely
reflect hormonal influences on smoking metabolism, sex differences in smoking behavior patterns (cigarettes per day,
inhalation depth), and interactions between smoking and testosterone-mediated cardiovascular risk pathways. This result
emphasizes the necessity of sex-stratified risk assessment in smoking cessation programs. Hepatic Function Markers
Show Unexpectedly High Importance. Contrary to the conventional focus on cardiopulmonary complications, hepatic
markers dominated individual feature rankings and system-level analysis. Gamma-glutamyl transferase (GGT) ranked
second overall (SHAP = 0.0596), while ALT (rank 9, SHAP = 0.0121) and AST (rank 14, SHAP = 0.0092) also
appeared within the top 15. Collectively, the hepatic system contributed the highest system-level importance (0.0270),
exceeding even cardiovascular markers (0.0126). This pattern reflects multiple pathophysiological processes: (1) direct
hepatotoxicity from smoking-related oxidative stress and toxic metabolite accumulation, particularly polycyclic aromatic
hydrocarbons; (2) smoking’s enhancement of alcohol-induced liver damage in co-users; and (3) systemic inflammation
that elevates hepatic acute-phase proteins[54]. The prominence of GGT is particularly notable, as this enzyme is induced
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by microsomal enzyme systems responding to xenobiotic exposure and correlates with oxidative stress burden. These
findings suggest that liver function monitoring may serve as an underappreciated early warning system for smoking-
related systemic damage, warranting greater clinical attention in smoker health assessments. Anthropometric and
Demographic Factors. Height (rank 3, SHAP = 0.0493) and age (rank 6, SHAP = 0.0197) demonstrated substantial
predictive importance. The height finding likely reflects complex interactions: taller individuals may have larger
lung capacity and different smoking exposure patterns per unit body surface area, while height itself correlates with
socioeconomic status and early-life nutrition-factors that influence both smoking prevalence and health resilience.
Age’s contribution reflects cumulative toxic exposure duration, with older smokers bearing greater total carcinogen
and oxidative stress burdens. Metabolic Markers Reveal Systemic Dysregulation. Hemoglobin (rank 4, SHAP
= 0.0408) and triglycerides (rank 5, SHAP = 0.0322) highlighted smoking’s metabolic consequences. Hemoglobin
showed a complex bidirectional relationship: elevated levels may indicate compensatory polycythemia responding
to chronic hypoxia from smoking-induced pulmonary dysfunction, while reduced levels could reflect inflammatory
suppression of erythropoiesis or nutritional deficiencies common in heavy smokers[55]. Triglyceride elevation reflects
smoking’s disruption of lipid metabolism through impaired insulin sensitivity and altered hepatic lipid processing,
contributing to metabolic syndrome and cardiovascular risk. Notably, the metabolic system overall ranked second in
system-level importance (0.0247), emphasizing smoking’s role as a metabolic disruptor beyond its direct toxic effects.
Cardiovascular and Renal Markers. Traditional cardiovascular risk factors showed moderate importance: systolic
blood pressure ranked 15th (SHAP = 0.0091), LDL cholesterol 8th (0.0130), and HDL cholesterol 13th (0.0094).
While individually less prominent than hepatic or metabolic markers, cardiovascular features collectively contributed
meaningfully (system importance = 0.0126). The relatively lower individual rankings may reflect that cardiovascular risk
manifests through multiple interconnected pathways rather than single dominant biomarkers. Renal function indicators
(serum creatinine rank 10, SHAP = 0.0110) demonstrated smoking’s nephrotoxic effects through direct tubular damage
and reduced renal perfusion from systemic vasoconstriction. Oral Health Markers. Dental indicators (tartar rank 7,
SHAP = 0.0153; dental caries rank 12, SHAP = 0.0096) contributed modestly but noticeably. These features likely
serve as proxies for smoking duration and intensity, as chronic smoke exposure damages oral tissues, reduces saliva
production, and alters oral microbiome composition[56]. Figure 5 presents a comprehensive SHAP summary plot
showing both feature importance (vertical ordering) and the directional impact of feature values (horizontal distribution
and color coding). Red points indicate feature values that increase smoking risk prediction, while blue points decrease it.
The violin plot width represents the density of observations at each SHAP value. Notable patterns include: male gender
consistently pushes predictions toward higher risk; elevated GGT, hemoglobin, and triglycerides increase predicted risk;
and higher HDL exerts a modest protective effect. The wide horizontal spread for features like GGT and triglycerides
indicates high inter-individual variability in how these markers influence predictions, likely reflecting heterogeneous
smoking patterns and co-morbidity profiles. Feature importance aggregated by physiological system, revealing that
hepatic (0.0270), metabolic (0.0247), and anthropometric (0.0220) systems contribute most strongly to smoking-related
health risk prediction. This systems-level perspective underscores that effective smoking risk assessment requires
comprehensive multi-system evaluation rather than focusing narrowly on cardiopulmonary endpoints.

Table 11: Top 15 most influential health indicators for smoking-related risk prediction, ranked by mean absolute SHAP
value. Clinical significance describes the pathophysiological relevance of each feature in smoking-related health decline.
The top 15 features collectively account for 91.90% of total model predictive importance.

Rank Feature SHAP Importance Clinical Significance
1 Gender 0.1312 Sex-specific smoking effects and vulnerability
2 GGT (Gtp) 0.0596 Liver enzyme - oxidative stress marker
3 Height (cm) 0.0493 Body size - exposure surface area proxy
4 Hemoglobin 0.0408 Oxygen transport - polycythemia indicator
5 Triglyceride 0.0322 Metabolic dysfunction - lipid dysregulation
6 Age 0.0197 Cumulative exposure duration
7 Tartar 0.0153 Oral health - smoking intensity proxy
8 LDL Cholesterol 0.0130 Atherosclerosis risk - "bad cholesterol"
9 ALT 0.0121 Liver enzyme - hepatocellular damage
10 Serum Creatinine 0.0110 Kidney function - renal damage marker
11 Weight (kg) 0.0105 Body composition - metabolic health
12 Dental Caries 0.0096 Dental health - oral hygiene indicator
13 HDL Cholesterol 0.0094 Protective cardiovascular factor
14 AST 0.0092 Liver enzyme - hepatic injury marker
15 Systolic BP 0.0091 Hypertension - cardiovascular stress

GGT: Gamma-glutamyl transferase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase;
LDL: Low-density lipoprotein; HDL: High-density lipoprotein; BP: Blood pressure
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Figure 5: SHAP summary plot illustrating feature importance (vertical axis) and directional impact (horizontal axis)
for the top 15 health indicators. Each point represents an individual from the test set. Red colors indicate high feature
values, blue indicates low values. Features above zero increase predicted smoking risk, while those below decrease
it. The violin plot width shows the density of observations. Gender emerges as the dominant predictor, followed by
hepatic markers (GGT, ALT, AST) and metabolic indicators (hemoglobin, triglycerides).

4.7 Personalized Prediction Interpretation

Our analysis employed Principal Component Analysis (PCA)[57] combined with K-Means clustering to identify
distinct health profiles among smokers, revealing meaningful patterns in how smoking affects different physiological
systems. The visualization (Figure 6) illustrates patient distribution across two principal components, where the first
component (explaining 22.3% of the total variance) primarily separates individuals based on cardiometabolic risk
factors such as blood pressure and lipid levels. The second component (11.9% variance) differentiates those exhibiting
liver and kidney function abnormalities.

The clustering results identified four clinically relevant subgroups:

• A high-risk group showing combined cardiometabolic and organ damage.

• A metabolic syndrome group characterized by isolated cardiovascular risks.

• A liver/kidney predominant group reflecting hepatic and renal dysfunction.

• A relatively healthier cluster exhibiting stable physiological parameters.
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These findings demonstrate that smoking-related health decline manifests in heterogeneous ways across individu-
als—some develop systemic damage, while others exhibit localized effects in specific organ systems. The clear
separation of clusters along these axes suggests that the observed groupings represent genuine biological differences
in how patients respond to smoking exposure, rather than random variation. The moderate total variance explained
(34.2%) further implies that additional factors—such as genetic predispositions, environmental co-exposures, or
lifestyle influences—likely contribute to the diverse health outcomes observed within smoking populations.

Figure 6: PCA + K-Means clustering of health metrics showing four distinct health profiles among smokers. The first
principal component captures cardiometabolic risk variation, while the second captures hepatic and renal dysfunction
patterns, highlighting biological heterogeneity in smoking-related health decline.
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Table 12: Representation of the performance metrics of various machine learning models applied to predict different
diseases, including Cardiovascular Disease, Diabetes, and Kidney Disease. Key indicators such as AUC (Area Under
the Curve), standard deviation, number of features, and major predictors for each model are highlighted, showcasing
the effectiveness of different algorithms in handling health-related data.

Disease Model AUC Mean AUC Std Num. Features Key Predictors

Cardiovascular Disease

Random Forest 0.86654 0.06686 8 systolic, Choles-
terol, HDL,
LDL, triglyceride,
age, weight(kg),
waist(cm)

XGBoost 0.77111 0.03455 8 systolic, Choles-
terol, HDL,
LDL, triglyceride,
age, weight(kg),
waist(cm)

LightGBM 0.75709 0.01467 8 systolic, Choles-
terol, HDL,
LDL, triglyceride,
age, weight(kg),
waist(cm)

Logistic Regression 0.72502 0.00458 8 systolic, Choles-
terol, HDL,
LDL, triglyceride,
age, weight(kg),
waist(cm)

SVM 0.72274 0.00627 8 systolic, Choles-
terol, HDL,
LDL, triglyceride,
age, weight(kg),
waist(cm)

Diabetes

Random Forest 0.85986 0.07007 6 fasting blood sugar,
age, weight(kg),
waist(cm), triglyc-
eride, HDL

XGBoost 0.76213 0.03073 6 fasting blood sugar,
age, weight(kg),
waist(cm), triglyc-
eride, HDL

LightGBM 0.75228 0.01292 6 fasting blood sugar,
age, weight(kg),
waist(cm), triglyc-
eride, HDL

Logistic Regression 0.72311 0.00523 6 fasting blood sugar,
age, weight(kg),
waist(cm), triglyc-
eride, HDL

SVM 0.71672 0.00428 6 fasting blood sugar,
age, weight(kg),
waist(cm), triglyc-
eride, HDL

Kidney Disease

Random Forest 0.66339 0.00729 2 serum creatinine,
Urine protein

XGBoost 0.66336 0.00727 2 serum creatinine,
Urine protein

Continued on next page
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Table 12 (continued)
Disease Model AUC Mean AUC Std Num. Features Key Predictors

LightGBM 0.66331 0.00697 2 serum creatinine,
Urine protein

Logistic Regression 0.65820 0.00608 2 serum creatinine,
Urine protein

SVM 0.58708 0.02150 2 serum creatinine,
Urine protein

Liver Disease

Random Forest 0.82817 0.08214 4 AST, ALT, GGT,
serum creatinine

XGBoost 0.76966 0.01830 4 AST, ALT, GGT,
serum creatinine

LightGBM 0.76641 0.01185 4 AST, ALT, GGT,
serum creatinine

SVM 0.74300 0.00585 4 AST, ALT, GGT,
serum creatinine

Logistic Regression 0.73332 0.00596 4 AST, ALT, GGT,
serum creatinine

Metabolic Syndrome

Random Forest 0.83068 0.08470 5 waist(cm), triglyc-
eride, HDL, fasting
blood sugar, systolic

XGBoost 0.70913 0.03849 5 waist(cm), triglyc-
eride, HDL, fasting
blood sugar, systolic

LightGBM 0.69990 0.01830 5 waist(cm), triglyc-
eride, HDL, fasting
blood sugar, systolic

Logistic Regression 0.67691 0.00407 5 waist(cm), triglyc-
eride, HDL, fasting
blood sugar, systolic

SVM 0.65507 0.00600 5 waist(cm), triglyc-
eride, HDL, fasting
blood sugar, systolic

4.8 Comparison to Traditional Clinical Risk Scores

To contextualize our machine learning models against conventional clinical risk stratification methods, we computed
a simplified Framingham cardiovascular risk score[58] has been shown in Figure 8 using established predictors:
age, total cholesterol, HDL cholesterol, systolic blood pressure, smoking status, and diabetes indicators. Participants
were subsequently categorized into low, moderate, or high risk groups according to standard Framingham point
thresholds. Figure 8 illustrates the distribution of these Framingham risk categories among smokers and non-smokers
in our dataset. A substantial proportion of smokers were classified within the moderate or high cardiovascular risk
categories, reinforcing the clinical relevance of smoking as a dominant determinant of cardiovascular health. While the
Framingham score provides a well-validated baseline for risk estimation, our machine learning models demonstrated
the potential to refine these predictions by integrating a broader set of physiological and biochemical variables. This
enhanced predictive capacity underscores the ability of data-driven models to complement traditional clinical tools,
offering more individualized and nuanced risk assessments for smoking-related health decline.

5 Discussion

This study’s primary contribution is a rigorous, systematic comparison of machine learning approaches for smoking risk
assessment rather than algorithmic innovation. While the methods employed (Random Forest, XGBoost, LightGBM)
are established techniques, our work advances the field through: (1) comprehensive evaluation across multiple
physiological systems rather than isolated endpoints; (2) emphasis on clinical interpretability via SHAP analysis; (3)
direct benchmarking against traditional clinical risk scores; and (4) thorough investigation of practical deployment
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Figure 7: The performance of various machine learning models (Random Forest, XGBoost, LightGBM, Logistic
Regression, and SVM) across multiple disease targets, including Cardiovascular Disease, Diabetes, Kidney Disease,
Liver Disease, and Headache Syndrome. The metrics illustrate the effectiveness of each model in predicting disease
outcomes, emphasizing differences in performance across the disease categories.

considerations including fairness, ethics, and generalizability. This comparative framework provides evidence-based
guidance for clinicians and healthcare systems considering the adoption of predictive analytics for smoking-related
health assessment.

We acknowledge that no predictive tool is perfect, and model errors can have consequences. False positives might
lead to unnecessary testing or increased anxiety, while false negatives could result in missed prevention opportunities.
Therefore, we recommend deploying these models in a human-in-the-loop framework, where clinicians validate
and contextualize automated predictions before acting on them. Clear communication with patients about model
limitations, combined with shared decision-making, will help ensure these tools support rather than replace clinical
reasoning. While the research employed widely recognized machine learning techniques, its key contribution lies in
the thorough combination of a large-scale health screening dataset (55,691 individuals) with a variety of biomedical
and lifestyle factors. In contrast to previous studies that typically concentrate on limited sets of biomarkers or smaller
populations, our analysis utilized a broad range of demographic, anthropometric, clinical, and behavioral variables at
once, which facilitated a more comprehensive understanding of health patterns associated with smoking. Additionally,
we emphasized the interpretability of the model by pairing feature selection (Boruta) with importance ranking, offering
clear insights into how each health indicator contributes comparatively. This clarity is especially important in biomedical
settings, where trust and transparency are critical for successful clinical implementation. In this manner, the study sets
itself apart not through innovative algorithms, but rather through the extent of the dataset, the synthesis of diverse health
variables, and a focus on clinically relevant interpretability.

5.1 Limitations and Generalizability

Several limitations warrant consideration. First, our dataset originates from a single South Korean health screening
program with predominantly urban, ethnically homogeneous participants. Model performance may differ in other ethnic
groups due to genetic polymorphisms affecting nicotine metabolism[59] (e.g., CYP2A6 variants)[60] and varying
baseline disease prevalence. External validation in diverse populations (European, African, Latino cohorts) is essential
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Figure 8: Distribution of Framingham cardiovascular risk categories among smokers and non-smokers. A larger
proportion of smokers fall within moderate-to-high risk categories, highlighting smoking’s strong contribution to
cardiovascular risk and the potential of machine learning models to improve upon traditional risk assessments.

before clinical deployment. Second, the dataset lacks socioeconomic indicators (income, education, occupation), which
are known confounders of both smoking behavior and health outcomes. Without controlling for these factors, our model
may partially conflate socioeconomic health disparities with smoking-specific effects. Third, the cross-sectional design
precludes assessment of temporal causality or prediction of future disease outcomes. Longitudinal validation tracking
individuals over 5-10 years is needed to confirm that high-risk predictions translate to actual disease incidence. Fourth,
smoking status relied on self-report, which may underestimate prevalence due to social desirability bias. Biochemical
validation (cotinine levels) would strengthen outcome ascertainment[61]. Future validation priorities include: (1)
multi-site studies in diverse ethnic populations; (2) prospective cohorts with longitudinal follow-up; (3) rural and
socioeconomically disadvantaged populations; and (4) integration of detailed smoking history variables (pack-years,
cessation attempts).

5.2 Ethical Considerations for Clinical Deployment

Deploying predictive algorithms raises important ethical considerations requiring proactive mitigation. Managing
Prediction Errors: Our model achieves 86.5% specificity (13.5% false positives) and 80.1% sensitivity (20% false
negatives). False positives may cause patient anxiety and unnecessary testing, while false negatives risk delayed
intervention. Mitigation strategies include: (1) two-stage screening with clinical confirmation; (2) clear communication
that predictions are probabilistic, not definitive; (3) shared decision-making frameworks; and (4) combining algorithmic
predictions with routine clinical assessment. Discrimination Risks: Predictive risk scores could be misused by
insurers or employers for discrimination. Recommended safeguards: (1) restrict access to treating clinicians only; (2)
prohibit sharing with third parties absent explicit consent; (3) advocate for legal protections under medical privacy
laws. Algorithmic Fairness: Our model’s reliance on sex (13.1% of importance) raises equity concerns[62]. While
reflecting genuine biological differences, sex-based predictions require: (1) stratified performance reporting; (2)
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disparate impact analyses; (3) ensuring adequate accuracy for both sexes, and (4) continuous fairness monitoring across
demographic subgroups. Explainability and Autonomy: SHAP analysis provides transparency enabling clinicians to
verify predictions against domain knowledge. Algorithms must function as decision support tools, not replacements for
clinical judgment. Clinicians retain authority to override recommendations, and patients retain the right to opt out of
algorithmic assessment. Implementation Requirements: (1) comprehensive informed consent; (2) clinician training
on model limitations; (3) continuous fairness audits; (4) patient feedback mechanisms; (5) regulatory compliance[63]
(FDA, GDPR, HIPAA); and (6) transparent documentation of model limitations and validation status.

6 Conclusion

This study demonstrates that machine learning can do more than just predict smoking-related diseases—it can help us
understand them in fundamentally new ways. By combining robust predictive performance with interpretable insights,
our models provide a practical tool for clinicians to identify high-risk smokers earlier and intervene more effectively.
The consistent superiority of ensemble methods, especially Random Forest, makes a strong case for adopting these
approaches in clinical risk assessment tools. The real value lies not just in the algorithms themselves, but in how
they reveal the complex interplay of risk factors that conventional statistical methods might miss. As we look to the
future, these findings point toward more personalized approaches to smoking cessation and health monitoring. By
understanding which specific systems are at risk in individual patients—whether cardiovascular, metabolic, hepatic, or
renal—we can tailor interventions that address each smoker’s unique vulnerability profile. This represents an important
step toward precision prevention for one of our most significant public health challenges.

Table 13: List of Abbreviations
Abbreviation Definition
COPD Chronic Obstructive Pulmonary Disease
AST Aspartate Aminotransferase (liver enzyme)
ALT Alanine Aminotransferase (liver enzyme)
Ggt (Gtp) Gamma-Glutamyl Transferase (liver/biliary marker)
HDL High-Density Lipoprotein ("good" cholesterol)
LDL Low-Density Lipoprotein ("bad" cholesterol)
SBP Systolic Blood Pressure
DBP Diastolic Blood Pressure
ML Machine Learning
AUC Area Under the ROC Curve
ROC Receiver Operating Characteristic
SHAP Shapley Additive Explanations (model interpretability method)
PCA Principal Component Analysis
SMOTE Synthetic Minority Over-sampling Technique (for class imbalance)
NRSBoundary-SMOTE Neighborhood Rough Set Boundary SMOTE (advanced resampling)
RF Random Forest
SVM Support Vector Machine
LR Logistic Regression
XGBoost Extreme Gradient Boosting
LightGBM Light Gradient Boosting Machine
CV Cross-Validation
SD Standard Deviation
BMI Body Mass Index
F1 F1-Score (harmonic mean of precision/recall)
G-mean Geometric Mean (of sensitivity/specificity)
CI Confidence Interval
PPV Positive Predictive Value
MICE Multiple Imputation by Chained Equations
MCAR Missing Completely At Random
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